Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Амурский государственный университет"

УТВЕРЖДАЮ	
Проректор по учебн работе	ой и научной
работе	
Лейфа	_ А.В. Лейфа
24 мая 2024 г.	•

РАБОЧАЯ ПРОГРАММА «RИМИХ»

Направление подготовки 15.03.04 Автоматизация технологических процессов и производств
Направленность (профиль) образовательной программы – Автоматизация технологических процессов и производств в энергетике
Квалификация выпускника – Бакалавр
Год набора – 2024
Форма обучения – Очная
Курс 1 Семестр 1
Экзамен 1 сем
Общая трудоемкость дисциплины 144.0 (академ. час), 4.00 (з.е)

Составитель Т.П. Платонова, доцент, канд. хим. наук Институт компьютерных и инженерных наук Кафедра химии и химической технологии

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 15.03.04 Автоматизация технологических процессов и производств, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 09.08.21 № 730

Рабочая программ	а обсуждена на заседани	ии кафедры химии и хим	иической технологии			
01.02.2024 г.	, протокол № 6					
Заведующий каф	едрой Гужель	Ю.А. Гужель				
СОГЛАСОВАНО		СОГЛАСОВАНО				
Учебно-методичес:	кое управление	Выпускающая каф	едра			
Чалкина	Н.А. Чалкина	Скрипко	О.В. Скрипко			
24 мая	. 2024 г.	24 мая	1 2024 г.			
СОГЛАСОВАНО		СОГЛАСОВАНО				
Научная библиоте	ка	Центр цифровой т технического обест				
Петрович	О.В. Петрович	Тодосейчук	А.А. Тодосейчук			
24 мая	. 2024 г.	24 мая	24 мая 2024 г.			

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Формирование объективного и целостного естественнонаучного мировоззрения; развитие и систематизация химических знаний, необходимых при решении практических вопросов разного уровня сложности в ходе выполнения задач в области профессиональной деятельности

Задачи дисциплины:

- овладение фундаментальными понятиями, законами и теориями химии, углубление и систематизация химических знаний;
- овладение методами и приемами решения конкретных задач из различных областей химии:
- формирование навыков проведения химического эксперимента, в том числе формирование навыков работы по заданным методикам, составления описания проводимых исследований, анализа полученных результатов и составления отчетов по выполненному заданию;
- формирование навыков использования химических знаний для решения прикладных задач учебной и профессиональной деятельности.

2. МЕСТО УЧЕБНОГО ПРЕДМЕТА В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Учебная дисциплина «Химия» входит в обязательную часть Блока 1. «Дисциплины» учебного плана. Для успешного освоения данной дисциплины необходимы базовые знания курса «Химия» в объёме средней общеобразовательной школы. Дисциплина занимает важное место в программе подготовки бакалавра, так как обеспечивает базовую подготовку студентов в области понимания химических

процессов, формирует навыки проведения экспериментальных исследований, оценки и использования их результатов. Знания, полученные при изучении дисциплины «Химия» будут использованы при изучении предметов «Материаловедение», «Безопасность жизнедеятельности».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Общепрофессиональные компетенции и индикаторы их достижения

Код и наименование общепрофессиональной компетенции	Код и наименование индикатора достижения общепрофессиональной компетенции
ОПК-1. Применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ИД-10ПК-1 Демонстрирует знания теории и основных законов в области естественнонаучных и общеинженерных дисциплин. ИД-20ПК-1 Использует методы математического анализа и моделирования, средства автоматизированного профессиональной деятельности. Проектирования в теоретических и расчетно- экспериментальных исследованиях. ИД-30ПК-1 Применяет методы теоретического и экспериментального исследования в профессиональной деятельности.

4. СТРУКТУРА УЧЕБНОГО ПРЕДМЕТА

Общая трудоемкость учебного предмета составляет 4.00 зачетных единицы, 144.0 академических часов.

- 1 № п/п
- 2 Тема (раздел) учебного предмета, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- 4.1 Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- 4.3 ПЗ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3	4					5	6	7				
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Строение вещества	1	8				2						12	индивидуальн ое задание, тест, защита лабораторной работы
2	Общие закономерности химических процессов	1	8				2						10	индивидуальн ое задание, тест, защита лабораторной работы
3	Растворы	1	6				8						12	индивидуальн ое задание, тест, защита лабораторны х работ
4	Электрохимиче ские системы	1	6				2						12	индивидуальн ое задание, тест, защита лабораторной работы
5	Избранные вопросы химии	1	6				2						12	индивидуальн ое задание, тест, защита лабораторной работы
6	Экзамен										0.3	35.7		
	Итого		34	0.	0.	.0	16	5.0	0.0	0.0	0.3	35.7	58.0	

5. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

5.1. Лекции

№ п/ Наименование темы Содержание	гемы (раздела)
-----------------------------------	----------------

П	(раздела)	
1	(раздела) Строение вещества	Задачи химической науки. Место химии в ряду естественных наук, связь химии с дисциплинами энергетического профиля. Основные понятия и законы химии. Классификация и современная номенклатура химических веществ. Введение в квантовую механику. Корпускулярно волновой дуализм электрона, уравнение де Бройля, соотношение неопределенностей Гейзенберга, уравнение Шредингера. Квантовые характеристики электрона. Атомные орбитали. Принцип Паули, правило Хунда, правила Клечковского. Последовательность заполнения электронами атомных орбиталей в многоэлектронных атомах. Периодический закон Д.И. Менделеева и строение атомов элементов. Изменение свойств атомов в группах, подгруппах и периодах периодической системы. Энергия ионизации, сродство к электрону, электроотрицательность Окислительные и восстановительные свойства атомов химических элементов. Значение периодического закона в химии. Химическая связь, ее природа. Ковалентная связь. Метод валентных связей (МВС). Механизмы образования ковалентной связи. Свойства ковалентной связи: энергия, длина, направленность, насыщаемость, поляризуемость и полярность, кратность. Особенности ковалентной связи. Гибридизация атомных орбиталей, ее типы и значение. Ионная связь. Механизм образования и свойства. Взаимная поляризация ионов в молекулах. Понятие о металлической связи: механизм образования, свойства. Межмолекулярные взаимодействия: силы Ван- дер Ваальса и водородная связь. Комплексные соединения. Твердое, жидкое, газообразное, плазменное состояния, их особенности. Кристаллическое состояние. Типы кристаллических решеток. Природа связи между частицами в кристаллических решеток. Природа связи между частицами в кристаллических решетках и влияние на свойства веществ. Аморфное и жидкое состояние.
	05	Жидкокристаллическое состояние
2	Общие закономерности химических процессов	Химическая термодинамика. Функции состояния. Внутренняя энергия и энтальпия, их физический смысл. Первый закон термодинамики. Стандартные условия реакций. Закон Гесса и следствия из него, применение для расчетов тепловых балансов. Понятие об энтропии. Изменение энтропии в химических реакциях и фазовых переходах. Энергия Гиббса, ее связь с энтальпией и энтропией. термодинамическое

		равновесие. Критерии направленности химических процессов и полноты их протекания. Понятие о химической кинетике. Классификация реакций. Закон действия масс, константа скорости реакции. Молекулярность и порядок реакции. Зависимость скорости химических реакций от температуры. Уравнение Вант- Гоффа. Энергия активации. Понятие о фотохимических и цепных реакциях. Каталитические системы. Понятие о катализе. Химическое равновесие. Принцип Ле Шателье. Влияние различных факторов на смещение химического равновесия. Константа равновесия.
3	Растворы	Состав растворов и способы ее выражения. Классификация растворов. Энергетические эффекты при растворении. Коллигативные свойства растворов. Законы Рауля и Вант-Гоффа. Растворы электролитов. Электролитическая диссоциация. Степень диссоциации, ее зависимость от природы растворяемого вещества и растворителя, концентрации, температуры. Изотонический коэффициент. Константа диссоциации. Закон разбавления Оствальда. Особенности структуры жидкой воды как растворителя. Диссоциация воды. Водородный показатель среды (рН). Сила кислот и оснований, константа кислотности, единая шкала кислотности для водных растворов. Понятие о произведении растворимости. Гидролиз солей. Механизмы гидролиза. Константа и степень гидролиза, их зависимость от природы соли, концентрации и температуры. Типы гидролиза солей. Дисперсные системы, их состав, характерные признаки. Классификация дисперсных систем, методы их получения. Поверхностные явления. Адсорбция и абсорбция. Коллоидные системы, их свойства. Строение коллоидных частиц. Электрокинетические свойства Термодинамическая (агрегативная) устойчивость. Седиментация. Коагуляция.
4	Электрохимические системы	Окислительно- восстановительные процессы. Важнейшие окислители и восстановители. Степень окисления. Электрохимические процессы. Возникновение потенциала на границе раздела фаз. Электродный, контактный и диффузионный потенциалы. Гальванические элементы как электрохимические системы. Измерение электродных потенциалов. Электрохимический ряд стандартных электродных потенциалов. Уравнение Нернста. Топливные элементы: принципы действия, особенности и

		характеристики. Коррозия металлов. Классификация коррозионных процессов. Процессы коррозии в природе и техносфере. Меры защиты от коррозии. Электролиз расплавов и растворов, его аппаратное обеспечение. Законы Фарадея. Перенапряжение и поляризация; выход по току. Последовательность разрядки ионов на электродах. Окислительно- восстановительные процессы. Важнейшие окислители и восстановители. Степень окисления. Электрохимические процессы. Возникновение потенциала на границе раздела фаз. Электродный, контактный и диффузионный потенциалы. Гальванические элементы как электрохимические системы. Измерение электродных потенциалов.
5	Избранные вопросы химии	Металлы. Особенности строения атомов s-, p-, d-, f- металлов. Кристаллическая решетка металлов. Распространенность и нахождение металлов в природе. Понятие об основных способах получения металлов из природных соединений. Физические и химические свойства металлов. Понятие о металлических сплавах и композиционных материалах на основе металлов. Использование металлов и сплавов на их основе в энергетике и электротехнике. Полимеры. Классификация полимеров. Методы получения. Строение и свойства полимеров. Старение полимеров. Применение полимерных материалов в электро-и теплоэнергетике.

5.2. Лабораторные занятия

Наименование темы	Содержание темы			
Основные классы и номенклатура неорганических соединений	Изучение свойств основных, кислотных, амфотерных оксидов, кислот, солей и оснований.			
Скорость химических реакций	Изучение факторов, влияющих на скорость химической реакции и условия смещения химического равновесия.			
Приготовление растворов заданной концентрации	Приготовление растворов с заданной массовой долей, молярной и нормальной концентрации.			
Электролитическая диссоциация	Сравнение химической активности кислот. Влияние одноименного иона на степень диссоциации слабых электролитов. Экспериментальное изучение диссоциации растворов солей. Ионные реакции.			
Гидролиз растворов солей	Экспериментальное изучение гидролиза солей, образованных сильной кислотой и сильным основанием, сильной кислотой и слабым основанием, слабой кислотой и сильным			

	основанием.
Коллоидные растворы	Получение коллоидных растворов и определение заряда коллоидной частицы.
Окислительно- восстановительные реакции	Окислительно- восстановительные процессы, механизмы их протекания, влияние различных параметров. Экспериментальное изучение окислительно- восстановительных свойств веществ под действием различных факторов.
Металлы	Экспериментальное изучение свойств s-, p-, d-, f-металлов

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Строение вещества	Выполнение индивидуальных заданий, подготовка к тестированию и защите лабораторной работы.	12
2	Общие закономерности химических процессов	Выполнение индивидуальных заданий, подготовка к тестированию и защите лабораторной работы.	10
3	Растворы	Выполнение индивидуальных заданий, подготовка к тестированию и защите лабораторных работ.	12
4	Электрохимические системы	Выполнение индивидуальных заданий, подготовка к тестированию и защите лабораторной работы.	12
5	Избранные вопросы химии	Выполнение индивидуальных заданий, подготовка к тестированию и защите лабораторной работы.	12

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Применяется электронное обучение: лекции проводятся очно, но для закрепления лекционного материала можно проработать лекции в режиме он- лайн с использованием электронного учебного комплекса (ЭУК "Химия") на платформе Moodle, лабораторный практикум - очно, в условиях специализированной химической лаборатории. Учебный курс разделяется на модули, по каждому из которых предусмотрено выполнение индивидуального домашнего задания. Работа на лекциях активизируется ежемесячной проверкой конспектов лекций, а также проведением терминологических диктантов и экспресс- опросов по изученным темам. При организации самостоятельной работы студентов, консультирования по оперативным вопросам и контроля знаний (тестирование), а также при проведении экзамена используется ЭУК "Химия" на платформе Moodle.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Вопросы к кзамену (1 семестр)

- 1. Стехиометрические законы химии (закон сохранения массы, постоянства состава, эквивалентов). Области их применения.
- 2. Квантово- механическая модель атома. Корпускулярно- волновая природа элементарных частиц. Дискретность энергии электрона. Принцип неопределенности.

Квантовые числа, их физический смысл и значения. Принцип Паули.

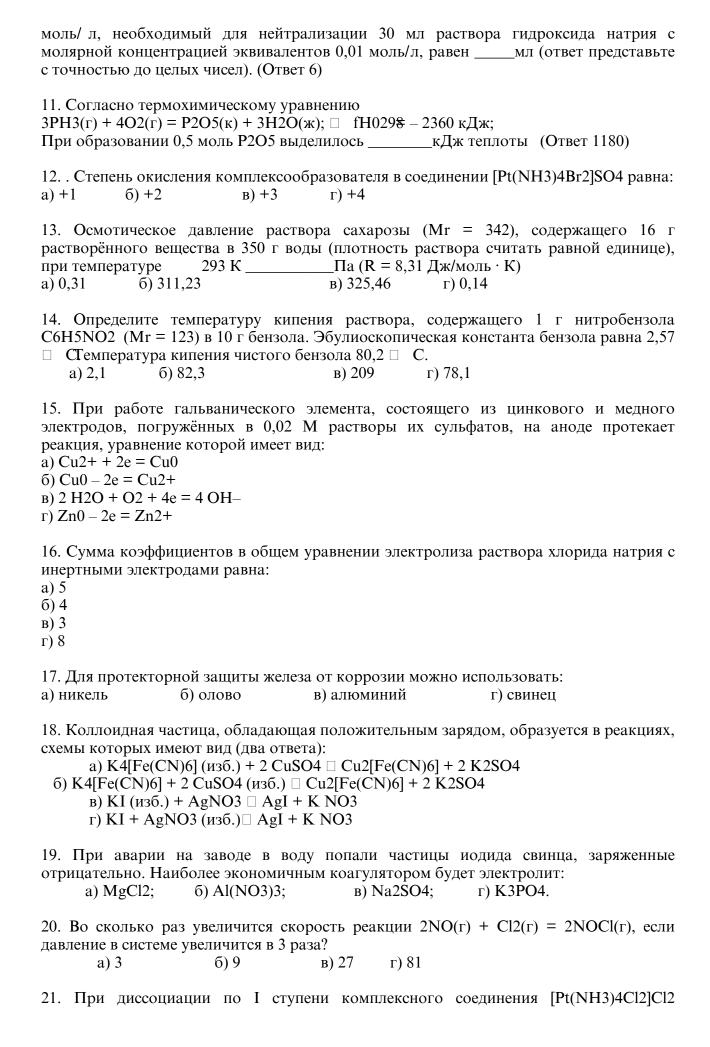
- 3. Порядок заполнения электронных уровней в многоэлектронных атомах. Правила Клечковского, исключения из них. Нормальные и возбужденные состояния атомов электронов. Правило Гунда (Хунда).
- 4. Периодическая система элементов Д.И. Менделеева и ее связь со строением атомов. Особенности строения атомов в главных и побочных подгруппах.
- 5. Закономерности изменения свойств элементов и их соединений в соответствии с электронной структурой атомов. Энергия ионизации и сродство к электрону. Электроотрицательность. Изменение окислительно- восстановительных и кислотно- основных свойств элементов и их соединений в группах и периодах.
- 6. Ковалентная химическая связь и механизмы ее образования. Свойства ковалентной связи: длина, энергия, направленность, насыщаемость, поляризуемость. Полярноковалентная связь: длина диполя и дипольный момент, влияние их величин на свойства химической связи. Кратность ковалентной связи. Образование сигма- и писвязей.
- 7. Гибридизация атомных орбиталей. Условия и типы гибридизации. Роль гибридизации в образовании молекул.
- 8. Ионная химическая связь. Механизм образования, свойства ионной связи (отличие от ковалентной связи). Степень окисления атомов. Поляризация и поляризующее действие ионов, влияние их на свойства вещества.
- 9. Межмолекулярные взаимодействия (силы Ван-дер- Ваальса, водородная связь).
- 10. Металлическая связь, механизм образования и свойства.
- 11. Энергетические эффекты химических реакций. Химическая термодинамика. Химические системы. Изобарные и изохорные процессы. Гомогенные и гетерогенные системы. Понятие «фаза» в гетерогенных системах.
- 12. Понятие внутренней энергии и энтальпии. Энтальпия химических процессов и фазовых превращений. Энтальпия образования вещества. Закон Гесса и следствие из него, значение в расчете тепловых балансов.
- 13. Понятие энтропии. Изменение энтропии при фазовых переходах и химических реакциях. Стандартная энтропия вещества.
- 14. Энергия Гиббса: изменение при химических изобарных процессах. Химическое сродство веществ и направленность химической реакции.
- 15. Химическая кинетика. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, давления. Энергия активации и активные молекулы. Уравнение Вант-Гоффа. Закон действующих масс, области его применения. Константа скорости химической реакции.
- 16. Влияние на скорость реакций природы и величины поверхности реагирующих веществ. Применение закона действующих масс к гетерогенным системам. Понятие о катализе.
- 17. Необратимые и обратимые процессы. Химическое равновесие (с кинетической и термодинамической точек зрения). Константа равновесия в гомогенных и гетерогенных процессах и ее связь с энергией Гиббса. Принцип Ле Шателье.
- 18. Определение и классификация растворов. Растворимость. Влияние на растворимость природы компонентов, температуры, давления. Изменение энтальпии и энтропии при растворении.
- 19. Давление насыщенного пара над раствором. Закон Рауля. Изменение температур кипения и замерзания (кристаллизации) растворов. Идеальные и реальные растворы. Применение к ним закона Рауля.
- 20. Понятие осмотического давления. Закон Вант-Гоффа.
- 21. Растворы электролитов. Теория электролитической диссоциации. Роль молекул растворителя в процессе диссоциации. Степень диссоциации. Слабые и сильные электролиты.
- 22. Слабые электролиты. Константа диссоциации. Ступенчатая диссоциация слабых электролитов.
- 23. Сильные электролиты. Активность ионов. Влияние концентрации сильных

электролитов на их химическую активность.

- 24. Вода. Особенности воды как растворителя. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель среды. Понятие об индикаторах.
- 25. Гидролиз солей. Механизм гидролиза. Типы. Гидролиза. Степень гидролиза, ее зависимость от природы соли, концентрации и температуры.
- 26. Дисперсность и дисперсные системы, их классификация. Коллоидные системы. Золи и гели, их свойства.
- 27. Электрохимические процессы. Возникновение потенциала на границе фаз «электролит – электрод». Измерение электродных потенциалов. Стандартный электродный потенциал. Зависимость величины электродных потенциалов от природы электродов и электролитов, концентрации электролитов. Формула Нернста. Понятие о контактном и диффузионном потенциалах.
- 28. Химические источники электрической энергии (ХИЭЭ). Принцип действия гальванических элементов. ЭДС и ее измерение. Окислительно- восстановительные потенциалы, их зависимость от концентрации растворов. 29. Электродная и концентрационная поляризация. Принцип действия

концентрационных гальванических элементов, аккумуляторов, топливных элементов.

- 30. Электролиз. Закон Фарадея. Физический смысл числа Фарадея. Потенциал разложения. Электродная и концентрационная поляризация. Перенапряжение. Выход по току.
- 31. Последовательность восстановления на катоде и окисления на аноде (электролиз расплавов и растворов, электролиз с нерастворимыми и растворимыми анодами). Практическое применение электролиза.
- 32. Коррозия металлов. Классификация коррозионных процессов. Химическая коррозия (газовая и жидкостная). Электрохимическая коррозия. Факторы, влияющие на скорость коррозии. Защита металлов от коррозии.
- 33. Металлы. Строение атомов металлов главных и побочных подгрупп. Типы связи в твердом и жидком состоянии. Распространенность и состояние металлов в природе. Основные способы извлечения металлов из природных соединений.
- 34. Металлы, физические и химические свойства. Применение в энергетике. Типы металлических сплавов.
- 35. Неметаллы. Строение атомов неметаллов. Распространенность в природе. Природные соединения неметаллов, получение в свободном состоянии. Физические и химические свойства водорода, углерода и кремния, азота и фосфора, кислорода и серы, галогенов.
- 36. Полимеры. Строение. Методы получения. Свойства полимеров. Применение.
- 37. Коллоидные растворы и их свойства.
- 38. Устойчивость коллоидных растворов. Коагуляция.


Вариант теста (примерные задания с ответами)

- 1. Оксид кремния (IV) может реагировать с (выберите два ответа): a) HCl
- б) K2O
- в) NaOH
- г) Fe(OH)2
- **д) H2O**
- 2. В каком соединении степень окисления азота отрицательная?
- a) KNO3
- б) N2O3
- в) NH3
- г) NO2.

X

3. В схеме превращений Fe □ FeCl3 □ Fe(NO3)3 веществами X и Y являются:

a) AgNO3 б) HNO3 в) HCl г) Cu(NO3)2 д) Cl2 ОТВЕТ: X Y
4. Электронная конфигурация валентного энергетического уровня 3S23p6 соответствует (выберите два ответа): а) Al+3 б) P+3 в) 40 18Ar г) 24 12Mg д) Cl-
5. Установите соответствие между формулой вещества и типом реализуемой в нём химической связи: Формула Название 1. SO2 а) ковалентаня полярная 2. O2 б) ковалентная неполярная 3. Fe в) ионная 4. N2 г) металлическая 5. K2O 6. CuCl2 7. H2SO3 OTBET: а б в г 1, 7 2,4 5,6 3
6. На каждой орбитали помещается не более двух электронов, имеющих противоположные (антипараллельные) спины. Это а) Правило Клечковского б) Принцип наименьшей энергии в) Принцип Паули г) Принцип Хунда
7. Равновесие в системе $C(тв) + 2N2O(r) = CO2(r) + 2N2(r) + Q$ сместится в сторону продуктов реакции при: а) повышении температуры б) повышении давления в) повышении концентрации N2O г) повышении концентрации N2 д) понижении температуры
8. Масса нитрата серебра, необходимого для приготовления 200 мл раствора с молярной концентрацией растворённого вещества 0,05 моль/ л, составляет
9. Дана схема уравнения реакции Mn(NO3)2 +PbO2 + HNO3 □ Pb(NO3)2 +HMnO4 + H2O Перед окислителем необходимо поставить коэффициент: а) 1 б) 2 в) 3 г) 4 д) 5
10. Объём раствора соляной кислоты с молярной концентрацией эквивалентов 0,05

образуется ионов хлора а) 1 б) 2	в) 3	г) 4		
22. К дисперсным сист ответа): а) горячее молоко б) вода-нефть в) хлеб г) попутные газы д) мучная пыль	емам, которые на	азываются эмульс	сиями, относят ((выберите два
23. Дан гальванически потенциал металлов электрода: □ (Sn) = -0,14; □ (Ag a) 0,66	по отношению	к потенциалу	стандартного	водородного
24. Какой продукт обра а) медь б) водород в) кислород г) хлор 25. Полимеры, которы ответа): а) фенолформальдегида б) полипропилен в) полиэтилентерефтал г) полистирол	е получают в резу ная смола			, ,
26. Жёсткой является ва а) ионов кальция б) ионов трёхвалентнов в) остаточного хлора г) ионов магния д) ионов стронция	-	гь избыток (выбер	оите два ответа)	:
27. Формулы веществ, взаимодействует медь (а) HNO3 б) AgNO3 в) Fe(NO3)2 г) H2SO4 д) CaCl2			при комнатной	і́ температуре
28. Формулы продукто ними в соответствующо а) AlCl3 и 3H2 б) 2AlCl3 и 2H2 в) 2AlCl3 и 3H2 г) AlCl3 и H2	-		лотой и коэффи	іциенты перед
29. Высший оксид элем а) Э2О5 б) Э2О3 в) ЭО	ента с порядковы	м номером 15 сос	ответствует форм	муле:

- 30. Формула вещества, которое в окислительно-восстановительной реакции KMnO4 + Na2SO3 + H2SO4 ® K2SO4 + MnSO4 + H2O + Na2SO4 проявляет окислительные свойства
- a) Na2SO3
- б) KMnO4
- в) H2SO4
- г) Na2SO4
- д) MnSO4

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРЕДМЕТА

а) литература

- 1. Ахметов, Н. С. Общая и неорганическая химия / Н. С. Ахметов. 13-е изд., стер. Санкт- Петербург: Лань, 2023. 744 с. ISBN 978-5-507-45394-8. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/267359 (дата обращения: 06.02.2024). Режим доступа: для авториз. пользователей.
- 2. Гельфман, М. И. Неорганическая химия: учебное пособие / М. И. Гельфман, В. П. Юстратов. 2-е изд., стер. Санкт- Петербург: Лань, 2022. 528 с. ISBN 978-5-8114-0730-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https:// e.lanbook.com/ book/210713 (дата обращения: 06.02.2024). Режим доступа: для авториз. пользователей.
- 3. Калько, О. А. Химия элементов. Лабораторный практикум: учебное пособие / О. А. Калько, Ю. С. Кузнецова; составители О. А. Калько, Ю. С. Кузнецова. Череповец: ЧГУ, 2021. 119 с. ISBN 978-5-85341-910-0. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/book/193097 (дата обращения: 06.02.2024). Режим доступа: для авториз. пользователей.
- 4. Павлов, Н. Н. Общая и неорганическая химия: учебник для вузов / Н. Н. Павлов. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 496 с. ISBN 978-5-8114-8579-6. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/177840 (дата обращения: 06.02.2024). Режим доступа: для авториз. пользователей.
- 5. Родина, Т.А. Практикум по общей и неорганической химии: учеб. пособие/ Т.А. Родина, А.В. Иванов, В.И. Митрофанова; АмГУ, ИФФ. Благовещенск: Изд-во Амур. гос. ун-та, 2008.-208 с.
- 6. Стась, Н. Ф. Решение задач по общей химии: учебное пособие / Н. Ф. Стась, А. В. Коршунов. 3- е изд., стер. Санкт- Петербург: Лань, 2022. 168 с. ISBN 978-5-8114-2274-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https:// e.lanbook.com/ book/212360 (дата обращения: 06.02.2024). Режим доступа: для авториз. пользователей.

б) программное обеспечение и Интернет-ресурсы

No	Наименование	Описание
1	LibreOffice	Бесплатное распространение по лицензии GNU LGPL https://ru.libreoffice.org/about-us/license/
2	http:// www.e.lanbook.com	Электронная библиотечная система «Издательства Лань», тематические пакеты: математика, физика, инженерно-технические науки, химия
3	http://elibrary.ru	Научная электронная библиотека журналов
4	https://urait.ru	Электронная библиотечная система «Юрайт». ЭБС «Юрайт» в полном объеме соответствует требованиям законодательства РФ в сфере образования

5	https://	Многопрофильный образовательный ресурс
	www.studentlibrary.ru	«Консультант студента» является электронной
		библиотечной системой (ЭБС), предоставляющей
		доступ через сеть Интернет к учебной литературе и
		дополнительным материалам, приобретенным на
		основании прямых договоров с правообладателями.
		Полностью соответствует требованиям федеральных
		государственных образовательных стандартов третьего
		поколения к комплектованию библиотек, в том числе
		электронных, в части формирования фондов основной
		и дополнительной литературы, для СПО, ВПО и
		аспирантуры

в) профессиональные базы данных и информационные справочные системы

No	Наименование	Описание
1	http://www.xumuk.ru	Поисковая система по химии, содержащая информацию по неорганической, органической, коллоидной и химии и по дисциплинам химического профиля
2	https:// www.multitran.com/	Мультитран – информационная справочная система «Электронные словари»
3	Google scholar	Поисковая система по полным текстам научных публикаций всех форматов и дисциплин
4	http://window.edu.ru/	Информационная система «Единое окно доступа к образовательным ресурсам» содержит электронные версии учебных материалов из библиотек вузов различных регионов России, научная и методическая литература

10. МАТЕРИАЛЬНО- ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРЕДМЕТА

Занятия дисциплине проводятся специализированных помещениях. представляющих собой учебные аудитории для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Для проведения лекционных и практических занятий используется аудитория, оснащенная презентационной мультимедийной техникой (проектор, экран, ноутбук). Для проведения лабораторных занятий используется специализированная лаборатория общей и неорганической химии с соответствующим оборудованием, материалами и реактивами. Все помещения, в которых проводятся занятия, соответствуют действующим санитарным и противопожарным правилам и нормам. обучающийся обеспечен индивидуальным доступом к библиотечным системам и к электронной образовательной сети университета. Самостоятельная работа обучающихся осуществляется в помещениях, оснащенных компьютерной техникой с возможностью подключения к сети Internet и обеспечением доступа к электронной образовательной сети университета.