Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Амурский государственный университет"

УТВЕРЖДАЮ	
Проректор по учебн	ой и научной
Проректор по учебнеработе	,
Лейфа	А.В. Лейфа
27 мая 2024 г.	•

РАБОЧАЯ ПРОГРАММА «ИНТЕГРИРОВАННЫЕ СИСТЕМЫ ПРОЕКТИРОВАНИЯ И УПРАВЛЕНИЯ»

Направление подготовки 15.03.04 Автоматизация технологических процессов и производств
Направленность (профиль) образовательной программы – Автоматизация технологических процессов и производств в энергетике
Квалификация выпускника – Бакалавр
Год набора – 2024
Форма обучения – Очная
Курс 4 Семестр 8
Экзамен 8 сем
Общая трудоемкость дисциплины 144.0 (академ. час), 4.00 (з.е)
Составитель Н.С. Безруков, Доцент, канд. техн. наук Энергетический факультет
Кафедра автоматизации производственных процессов и электротехники

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 15.03.04 Автоматизация технологических процессов и производств, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 09.08.21 № 730

Рабочая программ процессов и элект	ма обсуждена на заседани ротехники	ии кафедры автоматиз	ации производственных
01.02.2024 г.	, протокол № 7		
Заведующий каф	редрой Скрипко	О.В. Скрипко	
СОГЛАСОВАНО		СОГЛАСОВАНО)
Учебно-методичес	ское управление	Выпускающая ка	федра
Чалкина	Н.А. Чалкина	Скрипко	О.В. Скрипко
27 ма	я 2024 г.	27 ма	ая 2024 г.
СОГЛАСОВАНО)	СОГЛАСОВАНО)
Научная библиот	ека	Центр цифровой технического обе	трансформации и
Петрович	О В Петрович	Толосейчук	А А Толосейчук

27 мая 2024 г.

27 мая 2024 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Формирование у студентов знаний и умений в использовании современных интегрированных системах проектирования и управления для целей автоматизации технических и экономических процессов.

Задачи дисциплины:

- освоение методов проектирования и исследования интегрированных систем проектирования и управления;
- практическое освоение студентами современных программных и аппаратных средств проектирования и управления техническими и технологическими объектами;
- выполнение лабораторного практикума с использованием SCADA- системы Trace Mode (Adastra) и LabView (National Instruments).

2. МЕСТО УЧЕБНОГО ПРЕДМЕТА В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Интегрированные системы проектирования и управления» относится к части, формируемой участниками образовательных отношений.

Изучение курса базируется в основном на учебном материале следующих дисциплин: «Теория автоматического управления»; «Средства автоматизации и управления», «Вычислительные машины, сети и микропроцессорные системы управления», «Современные системы управления», «Проектирование автоматизированных систем». Знания и умения, полученные в результате изучения дисциплины, будут использованы при выполнении дипломного проекта по специальности и в практической деятельности выпускника.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Профессиональные компетенции и индикаторы их достижения

Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции
ПК-1 Способен участвовать в разработке проектов изделий с учетом технологических, конструкторских, эксплуатационных,	
эстетических, экономических и управленческих параметров, в разработке средств и систем автоматизации, контроля, диагностики, испытаний,	средств и систем автоматизации с учетом технологических, конструкторских,
управления процессами, жизненным циклом продукции и ее качеством с использованием стандартных средств автоматизации	Использует современные системы автоматизированного проектирования при разработке проектов изделий.
расчетов и проектирования	

4. СТРУКТУРА УЧЕБНОГО ПРЕДМЕТА

Общая трудоемкость учебного предмета составляет 4.00 зачетных единицы, 144.0 академических часов.

- 1 № π/π
- 2 Тема (раздел) учебного предмета, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- 4.1 − Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- 4.3 ПЗ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3	4						5	6	7			
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Введение в ИСПУ. АСУП.	8	2				4						4	Сдача лабораторны х работ
2	АСУТП. Управление технологически м процессом.	8	2				4						4	Сдача лабораторны х работ
3	Языки программирова ния ПЛК. МЭК 61131-3	8	2				4						4	Сдача лабораторны х работ
4	Энергосистема как объект управления		2				4						4	Сдача лабораторны х работ
5	Виды обеспечения ИСПУ		2				4						4	Сдача лабораторны х работ
6	Этапы создания АСУТП		2				4						4	Сдача лабораторны х работ. Тестирование №1.
7	Диспетчерское управление и контроль. SCADA-системы.		2				4						4	Сдача лабораторны х работ
8	Открытые		2				4						4	Сдача

	вычислительны е системы												лабораторны х работ. Подготовка к экзамену.
9	Математически е модели технологически х объектов	2				2						4	Сдача лабораторны х работ. Тестирование №2.
10	Комплекс технических средств подсистем контроля и управления	2				2						4	Сдача лабораторны х работ
11	Реализация и концепция построения АСУТП энергоблоков ТЭЦ					2						4	Сдача лабораторны х работ
12	Общие принципы управления проектами.					2						4	Проверочная работа
13	Экзамен									0.3	35.7		
	Итого	20	0.0	0	.0	40	0.0	0.0	0.0	0.3	35.7	48.0	

5. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

5.1. Лекции

№ п/	Наименование темы (раздела)	Содержание темы (раздела)
1	Введение в ИСПУ. АСУТП.	Уровни управления предприятием. Автоматизированные системы управления предприятием (АСУП). Исполнительные системы производства MES. Планирование потребностей в материалах и ресурсах MRP. Управление основными фондами предприятия EAM. Планирование ресурсов предприятия ERP.
2	АСУТП. Управление технологическим процессом.	Распределённая система управления (DSC). Диспетчерское управление и сбор данных (SCADA). Последовательное управление. Уровни управление производственным процессом. Требования к ИСПУ. Программируемый логический контроллер.
3	Языки программирования ПЛК. МЭК 61131-3	Стандарт МЭК 61131-3. Языки программирования: LD, IL, ST, FBD, SFC. Программное обеспечение: CoDeSys, Isa GRAF.
4	Этапы создания АСУТП	Руководства и стандарты используемые в процессе разработки АСУТП. Стадии и этапы создания АСУТП. Содержание работ.
5	Виды обеспечения ИСПУ	Системы автоматизированного проектирования. Классификация САПР. Математическое и

		техническое обеспечение. Обеспечение АСУТП: техническое, математическое, программное, организационное, методическое, лингвистическое, информационное.
6	Открытые вычислительные системы	Применение открытых систем в промышленной автоматизации. Признаки открытой системы. Принципы и технологии создания открытых программных систем. Технологии: DDE, OLE, COM, DCOM, ActiveX, OLE for PC, OPC DAcepвер. Примеры работы: OPCDA и OPCUA – серверов.
7	Диспетчерское управление и контроль. SCADA-системы.	Пользовательский интерфейс, SCADA- пакеты. Функции SCADA. Разработка человекомашинного интерфейса. SCADA как система диспетчерского управления. SCADA как часть системы автоматического управления. Хранение истории процесса. Безопасность SCADA. Свойства SCADA. Программное обеспечение: master SCADA, Trace Mode.
8	Энергосистема как объект управления	Пользовательский интерфейс, SCADA- пакеты. Функции SCADA. Разработка человекомашинного интерфейса. SCADA как система диспетчерского управления. SCADA как часть системы автоматического управления. Хранение истории процесса. Безопасность SCADA. Свойства SCADA. Программное обеспечение: master SCADA, Trace Mode.
9	Энергосистема как объект управления. Структура многоступенчатого управления в ОЭС. АСДУ.	Многоступенчатое управление. Организация, назначение и структура автоматизированной системы диспетчерского управления единой энергетической системы. Входная и выходная информация между уровнями управления в многоступенчатой АСДУ.
10	Энергосистема как объект управления. Организация оперативнодиспетчерского управления на ТЭС.	Принципиальная тепловая схема блочной ТЭС. Факторы, влияющие на размещение БЩУ и ГрЩУ. Варианты размещения БЩУ и ГрЩУ. Организационная структура оперативного управления. Структура управления блочной ТЭС. Функционально- групповое управление. Технологическая схема пуска питательного электронасоса с помощью УЛУ. Блок- схема алгоритма пуска ПЭН.

5.2. Лабораторные занятия

Наименование темы	Содержание темы				
*	Создать сигналы. Реализовать синусоидальное возмущение.				
	Разработка кнопок для задания возмущения. Разработка графика контроля за сигналом				
Разработка экранов АРМ в	Постановка задачи проекта. Создание экранов АРМ.				

программе в ТрейсМоуд 6 часть 2	
Разработка сигналов и настройка архивирования в программе в ТрейсМоуд 6 часть 2	Написание программ. Узлы проекта и база каналов. Создание архива и отчета тревог
Создание базы каналов для контроллера в программе в ТрейсМоуд 6 часть 2	Создание базы каналов PC- based контроллера. Настройка параметров сетевого обмена и динамических характеристик узла. Конфигурирование информационных потоков между узлами
Разработка фиксация событий в программе в ТрейсМоуд 6 часть 2	Организация вывода времени на графических экранах. Фиксация событий. Связь с СУБД MS Access
Обработка данных локального архива в программе в ТрейсМоуд 6 часть 2	Обработка данных локального архива. Обеспечение безопасности. Генератор отчетов
Разработка программ имитаторов, встраивание их в проект в программе в ТрейсМоуд 6 часть 2	Подготовительные операции. Разработка программ имитаторов, встраивание их в проект. Файлы проекта. Отладка
Разработка программ имитаторов, встраивание их в проект в программе в ТрейсМоуд 6 часть 2	Подготовительные операции. Разработка программ имитаторов, встраивание их в проект. Файлы проекта. Отладка
Разработка программ имитаторов, встраивание их в проект в программе в ТрейсМоуд 6 часть 2	
	Подготовительные операции. Разработка программ имитаторов, встраивание их в проект. Файлы проекта. Отладка
Разработка программ имитаторов, встраивание их в проект в программе в ТрейсМоуд 6 часть 2	имитаторов, встраивание их в проект. Файлы

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Введение в ИСПУ. АСУП.	Сдача лабораторных работ	4
2	АСУТП. Управление технологическим процессом.	Сдача лабораторных работ. Проверочная работа	4
3	Языки программирования	Сдача лабораторных работ	4

	ПЛК. МЭК 61131-3		
4	Энергосистема как объект управления	Сдача лабораторных работ. Подготовка к экзамену	4
5	Виды обеспечения ИСПУ	Сдача лабораторных работ	4
6	Этапы создания АСУТП	Сдача лабораторных работ. Подготовка к экзамену	4
7	Диспетчерское управление и контроль. SCADA-системы.	Сдача лабораторных работ. Проверочная работа	4
8	Открытые вычислительные системы	Сдача лабораторных работ	4
9	Математические модели технологических объектов	Сдача лабораторных работ	4
10	Комплекс технических средств под- систем контроля и управления	Сдача лабораторных работ. Подготовка к экзамену.	4
11	Реализация и концепция построения АСУТП энергоблоков ТЭЦ	Сдача лабораторных работ.	4
12	Общие принципы управления проектами.	Сдача лабораторных работ. Проверочная работа	4

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации дисциплины «Интегрированные системы проектирования и управления» используются традиционные и современные образовательные технологии.

Из современных образовательных технологий применяются информационные и компьютерные технологии, технологии активных форм проведения занятий в сочетании с внеаудиторной работой, технологии проблемного обучения.

На лекционных занятиях по дисциплине «Интегрированные системы проектирования и управления» возникают следующие дидактические задачи: заинтересовать, убедить, побудить к самостоятельному поиску и активной мыслительной деятельности, помочь совершить мысленный переход от теоретического уровня к прикладным знаниям и др. Поэтому, для решения этих задач на занятиях применяются следующие активные и интерактивные формы проведения занятий: лекция-беседа или диалог с аудиторией; лекция-дискуссия; лекция с применением техники обратной связи и др.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Вопросы к экзамену

8 семестр

- 1) Уровни управления предприятием («пирамида управления»)
- 2) Исполнительные системы производства (MES).
- 3) Планирование Потребностей в Материалах (MRP).
- 4) Планирование Ресурсов Производства (MRPII).

- 5) Управления Основными фондами Предприятия (ЕАМ).
- 6) Планирование Ресурсов Предприятия (ERP, ERPII, IRP).
- 7) Основные понятия АСУТП: DCS, SCADA, MMI, Batch Control.
- 8) Определение и функции АСУТП. Структура АСУТП.
- 9) Определение и требования к ИСПУ. Структура АСУТП.
- 10) Типы датчиков и сетей.
- 11) Программируемый логический контроллер.
- 12) Характеристика языков программирования по МЭК 61131-3. (типы, основные принципы использования). Программное обеспечение.
- 13) Язык релейно-контактных схем LD
- 14) Список инструкций IL
- 15) Структурированный текст ST
- 16) Диаграммы функциональных блоков FBD
- 17) Последовательные функциональные схемы SFC
- 18) Стадии создания АСУТП.
- 19) Этапы создания АСУТП следующих стадий: формирование требований и разраб отка концепции АС.
- 20) Этапы создания АСУТП следующих стадий: техническое задание, эскизный про ект, технический проект и рабочая документация.
- 21) Этапы создания АСУТП следующих стадий: ввод в действие и сопровождение АС.
- 22) САПР: определение, задачи и способы их достижения, классификация.
- 23) Обеспечение САПР.
- 24) САПР: основные функции и средства.
- 25) Обеспечение АСУТП: Техническое, Математическое, Программное.
- 26) Обеспечение АСУТП: Информационное, Лингвистическое, Организационное, Методическое.
- 27) Понятие открытой системы
- 28) Технология DDE.
- 29) Технология OLE.
- 30) Технология СОМ и DCOM.
- 31) Технология ActiveX.
- 32) Технология ОРС.
- 33) OPC DA-сервер. Примеры работы.
- 34) OPC UA сервер.
- 35) Основные понятия и функции SCADA. Программное обеспечение.
- 36) События и алармы. Работа аналогового аларма.
- 37) Разработка человеко-машинного интерфейса. SCADA как система диспетчерского и автоматического управления.
- 38) Функции SCADA: Хранение истории процесса, безопасность, общесистемные функции.
- 39) Свойства SCADA: инструментальные и эксплуатационные
- 40) Свойства SCADA: открытость и экономическая эффективность.
- 41) Энергосистема как объект управления. Структура типовой энергетической системы как единого объекта управления.
- 42) Баланс мощности и энергии. Составляющие баланса.
- 43) Графики нагрузки, пример суточного графика нагрузки. Годовое число часов использования максимальной мощности нагрузки.
- 44) Схема энергетического баланса в і- й системе. Структура многоступенчатого управления в ОЭС.
- 45) Структура автоматизированной системы диспетчерского управления единой энергетической системы
- 46) Принципиальная тепловая схема блочной ТЭС
- 47) Математические модели технологических объектов, используемые в задачах управления
- 48) Организация оперативно-диспетчерского управления (общие сведения). Факторы,

влияющие на размещение БЩУ и ГрЩУ. Варианты размещения БЩУ и ГрЩУ.

- 49) Организационная структура оперативного управления. Структура управления блочной ТЭС.
- 50) Функционально-групповое управление.
- 51) Технологическая схема пуска питательного электронасоса с помощью УЛУ.
- 52) Блок-схема алгоритма пуска ПЭН.
- 53) Комплекс технических средств подсистем контроля и управления нижнего уровня.
- 54) Реализация и концепция построения АСУТП. АСР составных агрегатов энергоблока.
- 55) Состав функций АСУТП. Информационные функции АСУ ТП.
- 56) Состав функций АСУТП. Функции управления АСУ ТП.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРЕДМЕТА

- а) литература
- 1.Интегрированные системы проектирования и управления. SCADA: учебное пособие / Х. Н. Музипов, О. Н. Кузяков, С. А. Хохрин [и др.]. Санкт-Петербург: Лань, 2022. 408 с. ISBN 978-5-8114-3265-3. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/book/213209 (дата обращения: 27.04.2024). Режим доступа: для авториз. пользователей.
- 2.Волчкевич, Леонид Иванович, Автоматизация производственных процессов [Текст] : учеб. пособие: доп. УМО / Л. И. Волчкевич. 2- е изд., стер. М. : Машиностроение, 2007. 380 с.
- 3. Жмудь, В. А. Автоматизированное проектирование систем управления (АПССУ). Часть 1: учебно- методическое пособие / В. А. Жмудь. Новосибирск: Новосибирский государственный технический университет, 2012. 72 с. ISBN 978-5-7782-2148-2. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https:// www.iprbookshop.ru/45352.html (дата обращения: 27.04.2024). Режим доступа: для авторизир. пользователей
- 4. Герасимов, А. В. Проектирование АСУТП с использованием SCADA- систем: учебное пособие / А. В. Герасимов, А. С. Титовцев; под редакцией Е. И. Шевченко. Казань: Казанский национальный исследовательский технологический университет, 2014. 128 с. ISBN 978-5-7882-1514-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/63973.html (дата обращения: 27.04.2024). Режим доступа: для авторизир. пользователей
- 5. Мазур И. И. Управление проектами: учеб.пособие: доп. Мин. обр. РФ / И. И. Мазур, В. Д. Шапиро, Н. Г. Ольдерогге ; под общ. ред. И. И. Мазура. 3-е изд. М. : Омега-Л, 2005. 664 с.
- 6. Советов, Б.Я. Теоретические основы автоматизированного управления: учеб.: рек. Мин. обр. РФ / Б. Я. Советов, В. В. Цехановский, В. Д. Чертовской. М. :Высш. шк., 2006.-463c.
- 7. Интегрированные системы проектирования и управления [Электронный ресурс]: сб. учеб.- метод. материалов для направления подготовки 15.03.04 Автоматизация технологических процессов и производств / АмГУ, ЭФ; сост. О.В. Скрипко, Н.С. Бодруг Благовещенск: Изд- во Амур.гос. ун- та, 2017. 13 с. http://irbis.amursu.ru/ DigitalLibrary/AmurSU_Edition/8256.pdf

б) программное обеспечение и Интернет-ресурсы

№	Наименование	Описание
1	MATLAB+SIMULINK	Academic classroom 25 по договору №2013.199430/949 от 20.11.2013.
2	LibreOffice	Бесплатное распространение по лицензии GNU LGPL https://ru.libreoffice.org/about-us/license/

3	Операционная система специального назначения «Astra Linux Special Edition» РУСБ.10015-01	Лицензионный договор № РБТ-14/1607-01- ВУЗ на предоставление права использования программы для ЭВМ.
4	http:// www.iprbookshop.ru/	Электронно- библиотечная система IPRbooks — научно- образовательный ресурс для решения задач обучения в России и за рубежом Уникальная платформа ЭБС IPRbooks объединяет новейшие информационные технологии и учебную лицензионную литературу. Контент ЭБС IPRbooks отвечает требованиям стандартов высшей школы, СПО, дополнительного и дистанционного образования. ЭБС IPRbooks в полном объеме соответствует требованиям законодательства РФ в сфере образования
5	ЭБС «КОНСУЛЬТАНТ СТУДЕНТА» www.studentlibrary.ru	Многопрофильный образовательный ресурс "Консультант студента" (www.studentlibrary.ru) является электронной библиотечной системой (ЭБС), предоставляющей доступ через сеть Интернет к учебной литературе и дополнительным материалам, приоб- ретенным на основании прямых договоров с правообладателями. Полностью соответствует требованиям федеральных государственных образовательных стандартов третьего поколения (ФГОС ВО 3+) к комплектованию библиотек, в том числе электронных, в части формирования фондов основной и дополнительной литературы, для СПО, ВПО и аспирантуры

в) профессиональные базы данных и информационные справочные системы

№	Наименование	Описание
1	http://drsk.ru	Официальный сайт Акционерное общество "Дальневосточная распределительная сетевая компания"
2	http:// www.rushydro.ru/company/	Официальный сайт ПАО «РусГидро»
3	http://new.fips.ru/	http://new.fips.ru/
4	https://scholar.google.ru/	Google Scholar - поисковая система по полным текстам научных публикаций всех форматов дисциплин
5	https://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU – российский информационно- аналитический портал в области науки, технологии, медицины и образования
6	https://www.mathnet.ru/	Общероссийский математический портал MathNet.Ru
7	https://gissee.ru/	Государственная информационная система в области энергосбережения и повышения энергетической эффективности. Экспертный портал по вопросам энергосбережения
8	https:// www.gis-tek.ru/	ГИС ТЭК – федеральная государственная информационная система, содержащая информацию о состоянии и прогнозе развития топливно-энергетического комплек-

са РФ.	
--------	--

10. МАТЕРИАЛЬНО- ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРЕДМЕТА

Занятия по дисциплине «Интегрированные системы проектирования и управления» проводятся в учебных аудиториях для занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Специальные помещения укомплектованы: учебная мебель, доска, мультимедиа-проектор, проекционный экран, ноутбук.

Все помещения, в которых проводятся занятия, соответствуют действующим противопожарным правилам и нормам.

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к электронно- библиотечным системам и к электронной информационно- образовательной среде университета.

Самостоятельная работа обучающихся осуществляется в помещениях, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду университета.

На занятиях применяется следующее техническое оборудование: ПЭВМ на базе процессора Intel Pentium, проектор.