Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Амурский государственный университет"

УТВЕРЖДАЮ							
Проректор по учебной и научной работе							
работе							
Лейфа А.В. Лейфа							
« 1 » сентября	2023 г.						

РАБОЧАЯ ПРОГРАММА «МЕТОДЫ И МОДЕЛИ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Направление подготовки 01.04.02 Прикладная математика и информатика
Направленность (профиль) образовательной программы – Математическое и программное обеспечение информационных систем
Квалификация выпускника – Магистр
Год набора – 2023
Форма обучения – Очная
Курс 1 Семестр 2
Экзамен 2 сем
Общая трудоемкость дисциплины 180.0 (академ. час), 5.00 (з.е)

Составитель Т.В. Труфанова, доцент, канд. техн. наук Факультет математики и информатики Кафедра математического анализа и моделирования

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 01.04.02 Прикладная математика и информатика , утвержденного приказом Министерства науки и высшего образования Российской Федерации от 10.01.18 № 13

Рабочая программ	а обсуждена	на зас	седании	кафедры	математи	ического	анализа	И
моделирования								

01.09.2023 г. , протокол № 1

Заведующий кафедрой Максимова Н.Н. Максимова

СОГЛАСОВАНО

Учебно-методическое управление

Чалкина Н.А. Чалкина

« 1» сентября 2023 г.

СОГЛАСОВАНО

Научная библиотека

______ О.В. Петрович « 1 » сентября 2023 г.

СОГЛАСОВАНО

Выпускающая кафедра

 Максимова
 Н.Н. Максимова

 « 1 » сентября
 2023 г.

СОГЛАСОВАНО

Центр цифровой трансформации и технического обеспечения

Тодосейчук А.А. Тодосейчук « 1 » сентября 2023 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

изучение, построение и исследование математических моделей различных физических явлений, которые приводят к задачам для дифференциальных уравнений с частными производными.

Задачи дисциплины:

- развитие навыков правильной постановки задач математической физики, т. е. задач, для которых решение существует, единственно и непрерывно зависит от данных залач:
 - -изучение основных методов решений уравнений математической физики;
 - выяснение физического смысла полученного решения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Методы и модели математической физики» является дисциплиной обязательной части учебного плана по направлению подготовки 01.04.02 «Прикладная математика и информатика».

Дисциплина излагается на базе математического анализа, алгебры и аналитической геометрии, дифференциальных уравнений, интегральных преобразований в тесной связи с теорией функций комплексного переменного и с основами вариационного исчисления, математическое моделирование.

Знания, умения и навыки, полученные в процессе изучения данного курса, могут быть использованы магистрантами при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Общепрофессиональные компетенции и индикаторы их достижения

Категория (группа) общепрофессиональны х компетенций	Код и наименование общепрофессиональной компетенции	Код и наименование индикатора достижения общепрофессиональной компетенции
Теоретические и практические основы профессиональной деятельности	ОПК-1 Способен решать актуальные задачи фундаментальной и прикладной математики	ИД-10ПК-1. Обладает специальными знаниями и практическим опытом решения актуальных задач фундаментальной и прикладной математики. ИД-20ПК-1. Умеет использовать методы решения прикладных задач (в т.ч. с использованием программных средств) в профессиональной деятельности
Теоретические и практические основы профессиональной деятельности	ОПК-2 Способен совершенствовать и реализовывать новые математические методы решения прикладных задач	ИД-10ПК-2. Владеет математическим аппаратом и опытом решения современных прикладных задач. ИД-20ПК-2. Способен модифицировать известные и разрабатывать новые методы решения прикладных задач в зависимости от специфики объекта исследования и условий реализации конкретной задачи

Теоретические и	ОПК-3 Способен	ИД-10ПК-3. Обладает
практические основы	разрабатывать	профильными знаниями в области
профессиональной	математические модели	формализации математических
деятельности	и проводить их анализ	моделей процессов и явлений,
	при решении задач в	проверки корректностей моделей и
	области	аналитических методов решения
	профессиональной	прикладных задач.
	деятельности	ИД-20ПК-3. Владеет методологией
		математического моделирования,
		знает и умеет реализовывать все
		этапы вычислительного
		эксперимента для решения задач
		профессиональной деятельности.
		ИД-3ОПК-3. Знает методы оценки
		погрешности результатов
		моделирования и границ
		применимости конкретных моделей,
		а также подходы к проверке
		адекватности результатов
		моделирования.

4. СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 5.00 зачетных единицы, 180.0 академических часов.

- 1 № π/π
- 2 Тема (раздел) дисциплины, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- 4.1 Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- $4.3 \Pi 3$ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3		4				5	6	7				
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Введение в теорию дифференциаль ных уравнений математической	2	2		2								6	Опрос, Самостоятель ная работа №1

	1	_							
	физики. Классификация уравнений с частными производными 2-го порядка								
2	Уравнения гиперболическо го типа Простейшие задачи, приводящие к уравнениям гиперболическо го типа. Постановка краевых задач	2	1					6	Устный опрос. Решение задач из сборника Бицадзе А.В.
3	Задача Коши для волнового уравнения и распространени е волн в неограниченны е пространства	2	1	2				6	Устный опрос. Решение задач из сборника Бицадзе А.В. Самостоятель ная работа №2
4	Методы решения краевых задач. Метод разделения переменных.	2	2	2				10	Устный опрос. Решение задач из сборника Бицадзе А.В. ИДЗ №1
5	Общая схема метода разделения переменных	2	1					6	Устный опрос. Решение задач из сборника Бицадзе А.В. ИДЗ №1
6	Распространени е волн в пространстве	2	2	2				8	Устный опрос. Решение задач из сборника Бицадзе А.В.
7	Уравнения параболическог о типа Простейшие задачи, приводящие к уравнениям параболическог о типа. Постановка краевых задач.	2	1					6	Устный опрос. Решение задач из сборника Бицадзе А.В. Самостоятель ная работа №3
8	Метод разделе-	2	2	2				10	Устный

	ния переменных для уравнения параболическог о типа. Функция источника													опрос. Решение задач из сборника Бицадзе А.В. ИДЗ №2
9	Задача о распространени е тепла на бесконечной прямой.	2	1		1								8	Устный опрос. Решение задач из сборника Бицадзе А.В. ИДЗ №2
10	Распространени е тепла в пространстве	2	1		1								8	Устный опрос. Решение задач из сборника Бицадзе А.В.
11	Уравнения эллиптического типа Задачи, приводящие к уравнению Лапласа.	2	1										10	Самостоятел ьная работа №3
12	Основные свойства гармонических функций.	2	1		2								8	Устный опрос. Решение задач из сборника Бицадзе А.В.
13	Решение краевых задач для простейших областей методами разделения переменных.	2	2		2								18	Устный опрос. Решение задач из сборника Бицадзе А.В. ИДЗ №3
14	Экзамен	2									0.3	35.7		
	Итого		18	3.0	16	5.0	0.	.0	0.0	0.0	0.3	35.7	110.0	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Лекции

№ п/	Наименование темы	Содержание темы (раздела)
П	(раздела)	
1	физики.	математической физики. Практическое применение уравнений математической физики для описания закономерностей различных физических явлений. Основные этапы исторического развития

2	Уравнения	каноническому виду. Уравнения эллиптического, гиперболического и параболического типов. Уравнение смешанного типа. Простейшие примеры трёх основных типов уравнений с частными производными второго порядка: уравнения Лапласа, волновое уравнение, уравнение теплопроводности. Простейшие задачи, приводящие к уравнениям
2	гиперболического типа Простейшие задачи, приводящие к уравнениям гиперболического типа. Постановка краевых задач	гиперболического типа. Постановка краевых задач. Уравнение малых поперечных колебаний струны. Уравнение продольных колебаний стержней и струн. Энергия колебания струны. Уравнение электрических колебаний в проводах. Граничные и начальные условия
3	Задача Коши для волнового уравнения и распространение волн в неограниченные пространства	Задача Коши для волнового уравнения и распространение волн в неограниченном пространстве. Формула Даламбера. Физическая интерпретация. Устойчивость решений. Полуограниченная прямая и метод продолжений.
4	Методы решения краевых задач. Метод разделения переменных.	Методы решения краевых задач. Метод разделения переменных. Собственные значения и собственные функции задачи Штурма- Лиувилля. Неоднородные уравнения. Общая первая краевая задача. Краевые задачи со стационарными неоднородностями.
5	Общая схема метода разделения переменных	Общая схема метода разделения переменных. Решение общих линейных уравнений гиперболического типа.
6	Распространение волн в пространстве	Уравнение колебаний в пространстве. Метод усреднения. Формула Пуассона. Метод спуска. Колебания ограниченных объемов. Общая схема метода разделения переменных. Колебания прямоугольной мембраны. Колебания круглой мембраны.
7	Уравнения параболического типа Простейшие задачи, приводящие к уравнениям параболического типа. Постановка краевых задач.	Простейшие задачи, приводящие к уравнениям параболического типа. Постановка краевых задач. Линейная задача о распространении тепла. Принцип максимального значения. Теорема единственности.
8	Метод разделе- ния переменных для уравнения параболического типа. Функция источника	Метод разделения переменных. Однородная краевая задача. Функция источника Неоднородное уравнение теплопроводности. Общая первая краевая задача.
9	Задача о распространение тепла на бесконечной прямой.	Задача на бесконечной прямой. Функция источника для неограниченной области. Краевые задачи для полуограниченной прямой.
10	Распространение тепла в пространстве	Распространение тепла в неограниченном пространстве. Функция температурного влияния. Распространение тепла в ограниченных телах. Схема метода разделения переменных.

		Краевые задачи остывания нагретых тел. Остывание круглого цилиндра, остывание прямоугольного параллелепипеда. Диффузионный процесс в активной среде с размножением. Задача экологического прогнозирования.
11	Уравнения эллиптического типа Задачи, приводящие к уравнению Лапласа.	Задачи, приводящие к уравнению Лапласа. Специальные функции математической физики. Стационарное тепловое поле. Уравнения Лапласа и Пуассона. Постановка основных краевых задач. Уравнение Лапласа в криволинейной системе координат. Фундаментальные решения уравнения Лапласа.
12	Основные свойства гармонических функций.	Гармонические функции и аналитические функции комплексного переменного Формулы Грина. Интегральное представление решения. Основные свойства гармонических функций. Единственность и устойчивость первой краевой задачи. Внешние краевые задачи. Единственность решения для двух и трёхмерных задач.
13	Решение краевых задач для простейших областей методами разделения переменных.	Решение краевых задач для простейших областей методами разделения переменных. Первая краевая задача для круга (внешняя и внутренняя задачи Дирихле). Интеграл Пуассона. Функция источника (функция Грина). Функция источника для уравнения Лапласа и её основные свойства.

5.2. Практические занятия

Наименование темы	Содержание темы
Классификация уравнений с частными производными 2- го порядка Простейшие задачи,	Дифференциальное уравнение с частными производными и его решения. Классификация уравнений с частными производными. Приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя
приводящие к уравнениям гиперболического типа. Постановка краевых задач	независимыми переменными. Приведение к каноническому виду линейных уравнений с частными производными второго порядка с тремя независимыми переменными. Решение задач. Волновое уравнение. Общее решение волнового уравнения. Постановка краевых задач
Задача Коши для волнового уравнения и распространение волн в неограниченные пространства	Решение задач. Задача Коши для волнового уравнения.
Методы решения краевых задач. Метод разделения переменных. Общая схема метода разделения переменных	Метод разделения переменных - метод Фурье для однородного уравнения с однородными граничными условиями. Неоднородная смешанная задача для уравнения гиперболического типа с однородными и неоднородными граничными условиями. Решение задач. Смешанная задача для уравнения гиперболического типа.
Распространение волн в пространстве	Решение краевых задач для уравнения гиперболического типа в пространственных

	областях.
Простейшие задачи, приводящие к уравнениям параболического типа. Постановка краевых задач. Метод разделения переменных для уравнения параболического типа. Функция источника	Решение задач. Постановка задачи для уравнения теплопроводности. Метод разделения переменных. Однородная краевая задача.
Задача о распространение тепла на бесконечной прямой. Распространение тепла в пространстве	Задача Коши для однородного уравнения теплопроводности. Задача Коши для неоднородного уравнения теплопроводности.
Распространение тепла в пространстве	Решение краевых задач для уравнения теплопроводности в пространственных областях.
Задачи, приводящие к уравнению Лапласа.	Решение задач. Постановка задач для уравнения Лапласа и Пуассона. Задача Дирихле и Неймана
Основные свойства гармонических функций.	Основные свойства гармонических функций.
Решение краевых задач для простейших областей методами разделения переменных.	Задачи на собственные значения и собственные функции оператора Лапласа. Решение краевых задач для уравнения Лапласа методом разделения переменных.

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Введение в теорию дифференциальных уравнений математической физики. Классификация уравнений с частными производными 2- го порядка	Устный опрос. Подготовка теоретического материала к каждому практическому занятию.	6
2	Уравнения гиперболического типа Простейшие задачи, приводящие к уравнениям гиперболического типа. Постановка краевых задач	Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	6
3	Задача Коши для волнового уравнения и распространение волн в	Самостоятельная работа «Задача Коши для волнового уравнения», устный опрос	6

	неограниченные пространства		
4	Методы решения краевых задач. Метод разделения переменных.	Устный опрос, индивидуальное задание №1 «Метод Фурье для решения гиперболических уравнений». Выполнение домашних заданий.	10
5	Общая схема метода разделения переменных	Индивидуальное задание №1 «Метод Фурье для решения гиперболических уравнений». Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	6
6	Распространение волн в пространстве	Распространение волн в пространстве. Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	8
7	Уравнения параболического типа Простейшие задачи, приводящие к уравнениям параболического типа. Постановка краевых задач.	Самостоятельная работа №2 «Краевые задачи для уравнения теплопроводности». Индивидуальное задание №2 «Метод Фурье для решения параболических уравнений». Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию	6
8	Метод разделения переменных для уравнения параболического типа. Функция источника	Индивидуальное задание №2 «Метод Фурье для решения параболических уравнений». Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию	10
9	Задача о распространение тепла на бесконечной прямой.	Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	8
10	Распространение тепла в пространстве	Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	8
11	Уравнения эллиптического типа Задачи, приводящие к уравнению Лапласа.	Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	10
12	Основные свойства гармонических функций.	Выполнение домашних заданий. Подготовка теоретического материала к каждому практическому занятию.	8
13	Решение краевых задач для простейших областей методами разделения переменных.	Самостоятельная работа №3 «Решение уравнений Лапласа для простейших областей». Индивидуальное задание №3. «Метод Фурье решения уравнений	18

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки 01.04.02 — Прикладная математика и информатика реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

При преподавании дисциплины «Методы и модели математической физики» используются как традиционные (лекция, проблемная лекция, лекция-семинар), так и инновационные технологии (применение мультимедийного проектора при изучении отдельных тем, «мозговой штурм», «метод проектов», возможно использование ресурсов сети Internet и электронных учебников).

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Промежуточный контроль осуществляется в виде экзамена. Экзамен сдается в конце семестра. Форма сдачи экзамена – устная. Необходимым условием допуска на экзамен является сдача всех индивидуальных и самостоятельных работ.

Примерные вопросы к экзамену 2-й семестр

- 1. Понятие дифференциальных уравнений в частных производных и его решения.
- 2. Понятие характеристической формы и классификация линейных уравнений 2-го порядка (гиперболического, эллиптического, параболического).
- 3. Характеристические кривые и характеристические направления.
- 4. Приведение к каноническому виду уравнений 2-го порядка с двумя переменными.
- 5. Простейшие задачи, приводящие к уравнениям гиперболического типа (колебание струны, распространение звука, распространение волн).
- 6. Уравнение малых поперечных колебаний струны.
- 7. Уравнение продольных колебаний струны (стержня).
- 8. Уравнение колебаний мембраны.
- 9. Граничные и начальные условия (3 типа).
- 10. Теорема единственности решения для гиперболического типа.
- 11. Формула Даламбера. (Решение задачи Коши для гиперболического типа)
- 12. Устойчивость решения.
- 13. Метод разделения переменных для уравнения свободных колебаний струны (метод Фурье).
- 14. Интерпретация решения для волнового уравнения.
- 15. Простейшие задачи, приводящие к уравнению параболического типа (уравнение теплопроводности, диффузионные процессы).
- 16. Линейная задача о распространении тепла (уравнение теплопроводности)
- 17. Постановка краевой задачи для уравнения теплопроводности.
- 18. Принцип максимального значения для уравнения теплопроводности.
- 19. Теорема единственности для параболического типа.
- 20. Метод разделения переменных для уравнения теплопроводности. Однородная краевая задача.
- 21. Функция источника для уравнения теплопроводности.
- 22. Неоднородное уравнение теплопроводности и его решение.
- 23. Общая (первая) краевая задача для уравнения теплопроводности (уравнение и граничные условия неоднородны).

- 24. Распространение тепла на бесконечной прямой (задача Коши).
- 25. Интеграл Пуассона для решения уравнения теплопроводности.
- 26. Краевая задача для полуограниченной прямой (леммы).
- 27. Уравнения эллиптического типа. Задачи, приводящие к уравнениям Лапласа.
- 28. Уравнения Лапласа в криволинейной системе координат (3 вида: в сферической, полярной, цилиндрической).
- 29. Фундаментальные решения уравнения Лапласа.
- 30. Гармонические функции. Общие свойства функций.
- 31. Первая и вторая формулы Грина.
- 32. Основная формула Грина.
- 33. Внешние краевые задачи для уравнений эллиптического типа.
- 34. Решение краевых задач для простейших областей методом разделения переменных.
- 35. Интеграл Пуассона (эллиптические уравнения).
- 36. Функция источника для уравнения Лапласа.
- 37. Свойства функции источника для уравнения Лапласа.
- 38. Уравнения колебания в пространстве.
- 39. Метод усреднения.
- 40. Формула Пуассона для решения задачи Коши о распространении волн в пространстве.
- 41. Метод спуска. Сферические, цилиндрические, плоские волны.
- 42. Решения уравнений колебания на плоскости и в пространстве (интегральные формулы Кирхгофа).
- 43. Решение неоднородного волнового уравнения в пространстве.
- 44. Колебания ограниченных объемов. Общая схема метода разделения переменных.
- 45. Колебания прямоугольной мембраны.
- 46. Колебания круглой мембраны.
- 47. Функция температурного влияния.
- 48. Распределение тепла в пространстве (неограниченном).
- 49. Распространение тепла в ограниченных телах. Схема метода разделения переменных.
- 50. Решение неоднородного уравнения теплопроводности в ограниченных телах.
- 51. Краевые задачи остывания нагретых тел. Остывание круглого цилиндра, остывание прямоугольного параллелепипеда.
- 52. Диффузионный процесс в активной среде с размножением. Задача экологического прогнозирования.

Критерии оценки знаний студентов по дисциплине «Методы и модели математической физики»

Для сдачи экзамена по курсу методы и модели математической физики, требуется посещение занятий, полное выполнение индивидуальных домашних заданий, выполнение самостоятельных работ. В случае невыполнения одного из указанных выше требований студент имеет возможность сдать экзамен, выполнив правильно и в полном объеме более половины упражнений из экзаменационного билета.

- Оценка «отлично» выставляется студенту, если он в полном объеме освоил все дидактические единицы, на достаточно высоком уровне владеет теоретическим материалом, способен продемонстрировать знания всех изученных тем и реализации алгоритмов, умеет осуществлять выбор алгоритма для решения практических задач, анализировать результаты расчетов.

Оценка «хорошо» выставляется студенту, если он владеет основным материалом программы, умеет решать задачи с применением изученных алгоритмов, обладает навыком реализации алгоритмов.

Оценка «удовлетворительно» выставляется студенту, если он умеет решать задачи с применением изученных алгоритмов, но плохо владеет теоретическими вопросами и доказательствами теорем.

Оценка «неудовлетворительно» выставляется студенту, если не освоил материал,

предусмотренный содержанием рабочей программы, не выполнил необходимый объем практикума.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) литература
- 1 Карчевский, М. М. Лекции по уравнениям математической физики: учебное пособие для вузов / М. М. Карчевский. 3-е изд., стер. Санкт-Петербург: Лань, 2022 164 с. ISBN 978-5-8114-9481-1. Текст: электронный // Лань: электронно-библиотечная система. URL:https:// e.lanbook.com/ book/195495 (дата обращения: 17.03.2022). Режим доступа: для авториз. пользователей.
- 2 Карчевский, М. М. Уравнения математической физики. Дополнительные главы: учебное
- пособие / М. М. Карчевский, М. Ф. Павлова. 2-е изд., доп. Санкт-Петербург: Лань, 2022 276 с. ISBN 978-5-8114-2133-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/212288 (дата обращения: 17.03.2022). Режим доступа: для авториз. пользователей.
- 3 Емельянов, В. М. Уравнения математической физики. Практикум по решению задач: учебное пособие для вузов / В. М. Емельянов, Е. А. Рыбакина. 3-е изд., стер. Санкт- Петербург: Лань,2021 216 с. ISBN 978-5-8114-7173-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/156410 (дата обращения: 11.06.2021). Режим доступа: для авториз. пользователей.
- 4 Павленко, А. Н. Уравнения математической физики: учебное пособие / А. Н.
- Павленко, О. А. Пихтилькова. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2013 100 с. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. URL: about:blankhttps://www.iprbookshop.ru/30134.html https://www.iprbookshop.ru/30134.html (дата обращения: 24.11.2021). Режим доступа: для авторизир. пользователей
- 5 Труфанова, Т. В. Методы решения уравнений математической физики [Электронный ресурс]: учеб. пос.: доп. УМО РФ / Т. В. Труфанова, А. Г. Масловская, Е. М. Веселова; АмГУ, ФМиИ. -Благовещенск: Изд-во Амур. гос. ун-та, 2015 196 с. Б. ц. http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7321.pdf
- 6 Бицадзе А.В. Сборник задач по уравнениям математической физики: учеб. пособие/ А. В.Бицадзе, Д. Ф. Калиниченко. -3-е изд. -М.: Альянс, 2007 -311 с.
- 7.Труфанова Т.В. Уравнения математической физики: учеб. пособие: Т. В. Труфанова, Е.М. Веселова; АмГУ, ФМиИ. -Благовещенск: Изд-во Амур. гос. ун-та, 2010 -112 с.
- 8 Дифференциальные уравнения математической физики: сб. учеб. -метод. материалов для
- направления подготовки 24.03.01 "Ракетные комплексы и космонавтика" / АмГУ, ФМиИ; сост. Т. В. Труфанова. Благовещенск: Изд-во Амур. гос. ун-та, 2017 34 с Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7811.pdf
- 9 Практическое решение уравнений математической физики [Электронный ресурс]: учеб. метод. пособие. Ч. 1 Гиперболические уравнения / АмГУ, ФМиИ; сост. Т. В. Труфанова. Благовещенск: Изд-во Амур. гос. ун-та, 2019 32 с. Б. ц. Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/11386.pdf
- 10 Практическое решение уравнений математической физики [Электронный ресурс]: учеб.- метод. пособие. Ч. 2 Параболические и эллиптические уравнения / АмГУ, ФМиИ; сост. Т. В.Труфанова. Благовещенск: Изд-во Амур. гос. ун-та, 2020 31 с. Б. ц. Режим доступа:http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/11500.pdf

б) программное обеспечение и Интернет-ресурсы

	№	Наименование	Описание
	1	Google Chrome	Бесплатное распространение по лицензии google
Į			chromium http:// code.google.com/ intl/ ru/ chromium/

		terms.html на условиях https://www.google.com/chrome/browser/privacy/eula_text.html.
2	http://www.amursu.ru	Официальный сайт ФГОУ ВО «Амурский государственный университет»
3	http:// www.iprbookshop.ru/	Научно- образовательный ресурс для решения задач обучения в России и за рубежом. Уникальная платформа ЭБС IPRbooks объединяет новейшие информационные технологии и учебную лицензионную литературу.
4	http://e.lanbook.com	Электронно- библиотечная система Издательство «Лань» — тематические пакеты: математика, физика, инженерно- технические науки. Ресурс, включающий в себя как электронные версии книг издательства «Лань» и других ведущих издательств учебной литературы, так и электронные версии периодических изданий по естественным, техническим и гуманитарным наукам.

в) профессиональные базы данных и информационные справочные системы

№	Наименование	Описание
1	https://scholar.google.ru/	GoogleScholar — поисковая система по полным текстам научных публикаций всех форматов и дисциплин
2	https://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU - российский информационно- аналитический портал в области науки, технологии, медицины и образования
3	https://uisrussia.msu.ru/	Университетская информационная система РОССИЯ (УИС РОССИЯ).
4	http://www.mathnet.ru/	Math- Net.Ru. Общероссийский математический портал. Современная информационная система, предоставляющая российским и зарубежным математикам различные возможности в поиске информации о математической жизни в России

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Лекции и практические занятия проводятся в стандартной аудитории, оснащенной в соответствии с требованиями преподавания теоретических дисциплин, включая мультимедиа- проектор. При изучении дисциплины используется основное необходимое материально- техническое оборудование: мультимедийные средства, Интернет- ресурсы, доступ к полнотекстовым электронным базам, книжный фонд научной библиотеки Амурского государственного университета.

Данное оборудование применяется при изучении дисциплины.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

Материально-техническая база обеспечивает проведение всех видов дисциплинарной подготовки, практической и научно-исследовательской работы обучающихся, которые предусмотрены учебным планом и соответствуют действующим санитарным и противопожарным правилам и нормам.