Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Амурский государственный университет"

УТВЕРЖДАЮ							
Проректор по учебной и научной работе							
работе	•						
Лейфа	А.В. Лейфа						
« 1 » сентября	2023 г.						

РАБОЧАЯ ПРОГРАММА «ЧИСЛЕННЫЕ МЕТОДЫ И МЕТОДЫ ОПТИМИЗАЦИИ»

Кафедра математического анализа и моделирования

Факультет математики и информатики

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для специальности 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно- космических комплексов, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 12.08.20 № 964

Рабочая программа обсуждена на заседании кафедры математического анализа и моделирования

01.09.2023 г. , протокол № 1

Заведующий кафедрой Максимова Н.Н. Максимова

СОГЛАСОВАНО

Учебно-методическое управление

Чалкина Н.А. Чалкина

« 1 » сентября 2023 г.

СОГЛАСОВАНО

Научная библиотека

 Петрович
 О.В. Петрович

 « 1 » сентября
 2023 г.

СОГЛАСОВАНО

Выпускающая кафедра

 Соловьев
 В.В. Соловьев

 « 1 » сентября
 2023 г.

СОГЛАСОВАНО

Центр цифровой трансформации и технического обеспечения

Тодосейчук А.А. Тодосейчук « 1 » сентября 2023 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Формирование у студентов системы знаний численных методов решения задач алгебры, математического анализа и дифференциальных уравнений, методов оптимизации, а также методологических подходов разработки и изучения основных вычислительных методов для решения задач исследовательского и прикладного характера

Задачи дисциплины:

Формирование у студентов навыков владения:

- методами вычислительной математики: правилами приближенных вычислений, численными методами решения нелинейных уравнений и систем, систем линейных уравнений, методами теории интерполирования, численными методами для обработки экспериментальных данных, численными методами решения задач Коши для обыкновенных дифференциальных уравнений, сеточными методами решения обыкновенных дифференциальных уравнений в постановке краевых задач, численными методами решения уравнений с частными производными;
- численными методами решения задач одномерной оптимизации, методами многомерной оптимизации и методами решения задач линейного программирования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Численные методы и методы оптимизации» включена в обязательную часть учебного плана. Для освоения дисциплины студенты используют знания, умения и виды деятельности, сформированные в процессе обучения в вузе в предшествующих семестрах. Этот курс тесно связан с основными математическими и информационными дисциплинами, изученными ранее: линейная алгебра, математический анализ, обыкновенные дифференциальные уравнения, информатика. Освоение дисциплины «Численные методы и методы оптимизации» будет полезно для последующего изучения дисциплин как базовой, так и вариативной частей учебного плана, а также для прохождения преддипломной практики, написания выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Общепрофессиональные компетенции и индикаторы их достижения

общепрофессионалы	именование ной	Код и наименование индикатора достижения общепрофессиональной компетенции
компетенции		
ОПК-5.	Способен	ИД – 1 ОПК-5 Знать: физические и математические
разрабатывать физич	неские и	модели исследуемых процессов, явлений и объектов,
математические	модели	относящихся к профессиональной сфере
исследуемых	процессов,	деятельности для решения инженерных задач
явлений и	объектов,	ИД – 2 ОПК-5 Уметь: - разрабатывать физические и
относящихся	К	математические модели исследуемых процессов,
профессиональной	сфере	явлений и объектов, относящихся к
деятельности для	решения	профессиональной сфере деятельности для решения
инженерных задач;		инженерных задач

4. СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 2.00 зачетных единицы, 72.0 академических часов.

1 - № π/π

- 2 Тема (раздел) дисциплины, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- **4.1** Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- 4.3 ПЗ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3				4						5	6	6 7
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Введение в предмет. Точность вычислительно г о эксперимента.	4	2		4								4	Устный опрос по теме по теме по теме по рактической работы. Блиц-опрос по итогам лекции.
2	2 Численные методы решения нелинейных алгебраических уравнений.	4	2		6								8	Устный опрос по теме по теме по теме по рактической работы. Блиц-опрос по итогам лекции.
3	Численные методы линейной алгебры.	4	2		6								8	Устный опрос по теме по теме по теме по рактической работы. Блиц-опрос по итогам лекции.
4	Аппроксимация функций и обработка экспериментал ьных данных методом наименьших квадратов.	4	2		6								8	Устный опрос по теме по теме по теме практической работы. Блиц-опрос по итогам лекции.
5	Численное дифференциров	4	2		6								8	Устный опрос по

6	ание и интегрировани е Численные	4	2		6								8	теме по теме практической работы. Блиц-опрос по итогам лекции.
	методы решения начальных задач для обыкновенных дифференциаль ных уравнений.													опрос по теме по теме практической работы. Блиц-опрос по итогам лекции.
7	Численные методы решения начальных и краевых задач для обыкновенных дифференциаль ных уравнений.	4	2		6								8	Устный опрос по теме по теме по теме практической работы. Блиц-опрос по итогам лекции.
8	Численные методы решения задач одномерной оптимизации Методы безусловной минимизации функций многих переменных.	4	2		6								8	Устный опрос по теме по теме по теме практической работы. Блиц-опрос по итогам лекции.
9	Решение задач линейного программирова ния.	4	2		4								8	Устный опрос по теме по теме по теме по рактической работы. Блиц-опрос по итогам лекции.
10	Зачет с оценкой	4								0.2			7.8	Тест промежуточн ого контроля. Зачет с оценкой.
	Итого		18	0.8	50	0.0	0.	.0	0.0	0.2	0.0	0.0	75.8	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Лекции

№ п/	Наименование темы	Содержание темы (раздела)
П	(раздела)	
1	Введение в предмет. Точность вычислительног о эксперимента.	Предмет вычислительной математики. Предмет теории оптимизации. Применение численных методов решения задач алгебры, анализа и оптимизации в математическом моделировании.

		Правила приближенных вычислений и элементы теории погрешностей. Приближенные числа, абсолютные и относительные погрешности. Арифметические действия над приближенными числами. Виды и источники погрешностей. Погрешность машинной арифметики. Устойчивость. Корректность. Сходимость.
2	2 Численные методы решения нелинейных алгебраических уравнений.	Метод половинного деления. Метод хорд. Сходимость итерационных последовательностей. Метод Ньютона. Модификации метода Ньютона. Метод простой итерации. Геометрическая интерпретация рассмотренных методов.
3	Численные методы линейной алгебры.	Численное решение систем линейных алгебраических уравнений. Основные понятия. Прямые и итерационные методы. Метод Гаусса. Метод квадратных корней. Метод прогонки для решения систем линейных алгебраических уравнений. Метод простой итерации. Метод Зейделя. Теорема о достаточном условии сходимости.
4	Аппроксимация функций и обработка экспериментальных данных методом наименьших квадратов.	Постановка задачи аппроксимации функций. Виды аппроксимаций. Интерполирование функций. Постановка задачи интерполяции. Полиномиальная интерполяция. Интерполяционный многочлен Лагранжа. Интерполяционные формулы Ньютона для равноотстоящих узлов. Интерполяционные сплайны. Метод наименьших квадратов.
5	Численное дифференцирование и интегрирование	Аппроксимация производных. Погрешности, возникающие при численном дифференцировании. Аппроксимация частных производных. Квадратурные формулы. Выбор шага интегрирования. Интегрирование с помощью степенных рядов. Интегралы от разрывных функций. Метод Гаусса. Интегралы с бесконечными пределами. Метод Монте-Карло.
6	Численные методы решения начальных задач для обыкновенных дифференциальных уравнений.	Основные понятия и методы решения. Задача Коши. Одношаговые методы. Метод последовательных приближений Пикара. Метод Эйлера. Методы Рунге-Кутта.
7	Численные методы решения начальных и краевых задач для обыкновенных	Метод конечных разностей для линейных и нелинейных дифференциальных уравнений второго порядка. МКР.

	дифференциальных уравнений.	
8	Численные методы решения задач одномерной оптимизации Методы безусловной минимизации функций многих переменных.	Минимум функции одной переменной. Постановка задачи и стратегии описка. Метод золотого сечения. Минимум функции многих переменных. Необходимые и достаточные условия минимума дифференцируемой функции многих переменных. Выпуклые функции. Методы безусловной минимизации, использующие производные функции (метод градиентного спуска, метод наискорейшего спуска).
9	Решение задач линейного программирования.	Постановка и классификация задач математического программирования. Решение задач линейного программирования: постановка задачи, графический метод, симплекс- метод, симплексные таблицы.

5.2. Практические занятия

Наименование темы	Содержание темы
Введение в предмет. Точность вычислительног о эксперимента.	Выполнение практических работ предполагает реализацию численных методов для прикладных задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи, как с использованием возможностей ППП Matlab, так и реализуя алгоритмы изученных методов. Выполнение расчетной работы (5 заданий на оценку погрешностей, индивидуальные варианты).
Численные методы решения нелинейных алгебраических уравнений.	Выполнение практических работ предполагает реализацию численных методов для прикладных задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи, как с использованием возможностей ППП Matlab, так и реализуя алгоритмы изученных методов. Выполнение практической работы. Реализация: локализации корней, метод половинного деления, метод Ньютона, МПИ. Оценка погрешностей. Проверка с использованием встроенных функций ППП Matlab.
Численные методы линейной алгебры.	Выполнение практических работ предполагает реализацию численных методов для прикладных задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи, как с использованием возможностей ППП Matlab, так и реализуя алгоритмы изученных методов. Выполнение практической работы. Реализация: метод прогонки и МПИ. Оценка погрешностей. Проверка с использованием встроенных функций ППП Matlab.
Аппроксимация функций и обработка экспериментальных	1 1 1 1

данных методом наименьших квадратов. Численное дифференцирование	задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи, как с использованием возможностей ППП Matlab, так и реализуя алгоритмы изученных методов. Выполнение практической работы. Реализация: построение ИП Лагранжа, ИП Ньютона, сплайна, применение МНК. Оценка погрешностей. Проверка с использованием встроенных функций ППП Matlab. Выполнение практических работ предполагает
и интегрирование	реализацию численных методов для прикладных задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи, как с использованием возможностей ППП Matlab, так и реализуя алгоритмы изученных методов. Выполнение практической работы. Реализация: КР формулы дифференцирования, квадратурные формулы численного интегрирования, метод МонтеКарло. Оценка погрешностей. Проверка с использованием встроенных функций ППП Matlab.
Численные методы решения начальных задач для обыкновенных дифференциальных уравнений.	
Численные методы решения начальных и краевых задач для обыкновенных дифференциальных уравнений.	Выполнение практических работ предполагает реализацию численных методов для прикладных задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи, как с использованием возможностей ППП Matlab, так и реализуя алгоритмы изученных методов. Выполнение практической работы. Реализация: МКР. Оценка погрешностей. Проверка с использованием встроенных функций ППП Matlab.
Численные методы решения задач одномерной оптимизации Методы безусловной минимизации функций многих переменных.	реализацию численных методов для прикладных
Решение задач линейного программирования.	Выполнение практических работ предполагает реализацию численных методов для прикладных задач по индивидуальным вариантам. Студенты должны продемонстрировать умение решать задачи,

как с использованием возможностей ППП Matlab,
так и реализуя алгоритмы изученных методов.
Выполнение практической работы. Реализация:
симплекс-метод, геометрический метод. Проверка с
использованием встроенных функций ППП Matlab.

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Введение в предмет. Точность вычислительног о эксперимента.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	4
2	2 Численные методы решения нелинейных алгебраических уравнений.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
3	Численные методы линейной алгебры.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
4	Аппроксимация функций и обработка экспериментальных данных методом наименьших квадратов.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
5	Численное дифференцирование и интегрирование	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
6	Численные методы решения начальных задач для обыкновенных дифференциальных уравнений.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
7	Численные методы решения начальных и краевых задач для обыкновенных дифференциальных уравнений.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
8	Численные	Самостоятельная работа по	8

	методы решения задач одномерной оптимизации Методы безусловной минимизации функций многих переменных.	теме практической работы. Подготовка к тестированию.	
9	Решение задач линейного программирования.	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	8
10	Зачет с оценкой	Самостоятельная работа по теме практической работы. Подготовка к тестированию.	7.8

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки 24.03.01 -«Ракетные комплексы и космонавтика» реализация компетентностного подхода широкое использование в учебном процессе предусматривает интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. При преподавании дисциплины «Численные методы и методы оптимизации» используются проблемная лекция, лекция- семинар), традиционные (лекция, инновационные (применение мультимедийного технологии семинардискуссия, «мозговой штурм», возможно использование ресурсов сети Internet и электронных учебников). Лекционные занятия проводятся с использованием традиционной, активной и интерактивной форм обучения. Практические занятия проводятся с использованием активных и интерактивных форм обучения.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Примерные вопросы к зачету с оценкой:

- 1. Классификация погрешностей. Приближенные числа, их абсолютные и относительные погрешности. Верные знаки числа. Арифметические действия над приближенными числами.
- 2. Правила приближенных вычислений. Погрешности вычисления значений функции.
- 3. Устойчивость. Корректность. Сходимость итерационных последовательностей.
- 4. Численные методы решения нелинейных уравнений. Локализация корней. Методы дихотомии.
- 5. Численные методы решения нелинейных уравнений. Локализация корней. Метод Ньютона.
- 6. Численные методы решения нелинейных уравнений. Локализация корней. Метод простой итерации.
- 7. Численное решение систем линейных алгебраических уравнений. Прямые методы. Метод Гаусса.
- 8. Метод прогонки. Контроль точности при реализации прямых методов решения СЛАУ.
- 9. Численное решение систем линейных алгебраических уравнений. Итерационные методы. Метод простой итерации. Метод Зейделя. Теорема об оценках погрешностей.
- 10. Аппроксимация функций. Интерполирование функций. Полиномиальная интерполяция. Интерполяционные формулы Ньютона для равноотстоящих узлов.
- 11. Аппроксимация функций. Интерполяционный многочлен Лагранжа.
- 12. Аппроксимация функций. Метод наименьших квадратов.
- 13. Численные методы решения начальных задач для обыкновенных

- дифференциальных уравнений. Постановка задачи. Классификация методов. Метод Пикара.
- 14. Численные методы решения начальных задач для обыкновенных дифференциальных уравнений. Метод Эйлера и его модификации. 15. Численные методы решения начальных задач для обыкновенных дифференциальных уравнений. Семейство методов Рунге-Кутты. 16. Приближенные методы решения краевых задач для обыкновенных дифференциальных уравнений. Постановка краевой задачи. Классификация методов.
- 17. Численные методы решения краевых задач для обыкновенных дифференциальных уравнений. Метод конечных разностей.
- 18. Минимум функции одной переменной. Постановка задачи и стратегии поиска. Метод золотого сечения.
- 19. Минимум функции многих переменных. Необходимые и достаточные условия минимума дифференцируемой функции многих переменных. Метод градиентного спуска, метод наискорейшего спуска.
- 20. Постановка и классификация задач математического программирования. Решение задач линейного программирования: постановка задачи, графический метод, симплекс-метод, симплексные таблицы.
- 21. Решение задач линейного программирования: симплекс- метод, симплексные таблицы.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) литература
- 10.1 Демидович, Б. П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения: учебное пособие / Б. П. Демидович, И. А. Марон, Э. З. Шувалова. 5-е изд., стер. Санкт-Петербург: Лань, 2022. 400 с. ISBN 978-5-8114-0799-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210437 (дата обращения: 28.04.2023). Режим доступа: для авториз. пользователей.
- 10.2 Лесин, В. В. Основы методов оптимизации: учебное пособие для вузов / В. В. Лесин, Ю. П. Лисовец. 5-е изд, стер. Санкт-Петербург: Лань, 2022. 344 с. ISBN 978-5-507-44229-4. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/221324 (дата обращения: 28.04.2023). Режим доступа: для авториз. пользователей.
- 10.3 Волков, Е. А. Численные методы: учебное пособие для вузов / Е. А. Волков. 7-е изд., стер. Санкт-Петербург: Лань, 2022. 252 с. ISBN 978-5-507-44711-4. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/254663 (дата обращения: 28.04.2023). Режим доступа: для авториз. пользователей.
- 10.4 Колбин, В. В. Специальные методы оптимизации: учебное пособие / В. В. Колбин. Санкт- Петербург: Лань, 2022. 384 с. ISBN 978-5-8114-1536- 6. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/211448 (дата обращения: 28.04.2023). Режим доступа: для авториз. пользователей.
- 10.5 Кондаков, Н. С. Основы численных методов: практикум / Н. С. Кондаков. Москва: Московский гуманитарный университет, 2014. 92 с. ISBN 978-5-98079-981-6. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/39690.html (дата обращения: 28.04.2023). Режим доступа: для авторизир. пользователей
- 10.6 Пантелеев, А. В. Методы оптимизации в примерах и задачах : учебное пособие / А. В. Пантелеев, Т. А. Летова. 4-е изд., испр. Санкт-Петербург : Лань, 2022. 512 с. ISBN 978-5-8114-1887-9. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/212129 (дата обращения: 28.04.2023). Режим доступа: для авториз. пользователей.

- 10.7 Срочко, В. А. Численные методы. Курс лекций: учебное пособие / В. А. Срочко. Санкт- Петербург: Лань, 2022. 208 с. ISBN 978-5-8114-1014- 9. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/210359 (дата обращения: 28.04.2023). Режим доступа: для авториз. пользователей.
- 10.8 Численные методы: использование инструментальных средств к реализации алгоритмов на базе ППП MATLAB [Электронный ресурс]: учеб. пособие / А. Г. Масловская, А. В. Павельчук; АмГУ, ФМиИ. Благовещенск: Изд-во Амур. гос. унта, 2016. 212 с. http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7430.pdf
- 10.9 Масловская, Анна Геннадьевна. Основные принципы работы и конструирование интерфейса в MATLAB [Текст] : практикум / А. Г. Масловская, А. В. Рыженко ; АмГУ, ФМиИ. Благовещенск : Изд-во Амур. гос. ун-та, 2008. 103 с.
- 10.10. Детерминированные математические модели. Учебно-методическое пособие // А. Г. Масловская АмГУ, ФМиИ. Благовещенск: Издательство Амурского государственного университета, 2020. 55 c.http:// irbis.amursu.ru/ DigitalLibrary/ AmurSU_Edition/11487.pdf

б) программное обеспечение и Интернет-ресурсы

№	Наименование	Описание
1	http://exponenta.ru/	Научная электронная библиотека eLIBRARY.RU- это крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты более 14 млн. научных статей и публикаций. На платформе eLIBRARY.RU доступны электронные версии более 2200 российских научно- технических журналов, в том числе более 1100 журналов в открытом доступе.
2	http://exponenta.ru/	Имеются ресурсы: Internet- класс по Высшей Математике; работа с примерами, решенными в средах ППП; банк решенных студенческих задач; обсуждение на форуме.
3	http:// www.iprbookshop.ru/	Электронно- библиотечная система IPRbooks — научнообразовательный ресурс для решения задач обучения в России и за рубежом. Уникальная платформа ЭБС IPRbooks объединяет новейшие информационные технологии и учебную лицензионную литературу. Контент ЭБС IPRbooks отвечает требованиям стандартов высшей школы, СПО, дополнительного и дистанционного образования.

в) профессиональные базы данных и информационные справочные системы

№	Наименование	Описание
1	http://www.ict.edu.ru/	Информационно- коммуникационные технологии в образовании — федеральный образовательный портал, обеспечивающий информационную поддержку образования в области современных информационных и телекоммуникационных технологий, а также деятельности по применению ИКТ в сфере образования.
2	http://www.informika.ru/	Сайт «Информика». Обеспечивает информационную поддержку всестороннего развития и продвижения новых информационных технологий в сферах образования и науки России.

3	http://www.mathnet.ru/			' 1	оссийский			
		портал. Современная информационная система, предоставляющая российским и зарубежным						
		математи	икам ра	зличные	возможно	сти	В	поиске
		информации о математической жизни в России.						

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Занятия по дисциплине проводятся в специальных помещениях, представляющих собой учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания учебного оборудования.

Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. Все помещения, в которых проводятся занятия, соответствуют действующим противопожарным правилам и нормам.

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к электронно- библиотечным системам и к электронной информационнообразовательной среде университета. Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

На занятиях применяется следующее техническое оборудование: ПЭВМ на базе процессора Intel Pentium, проектор. Лекции проводятся в стандартной аудитории, оснащенной в соответствии с требованиями преподавания теоретических дисциплин, включая мультимедиа- проектор. Практические занятия проводятся в компьютерном классе, рассчитанном на 10 посадочных рабочих мест пользователей, в котором установлен и применяется пакет прикладных программ Matlab. Данное оборудование и программное обеспечение применяется при изучении дисциплины.