Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "Амурский государственный университет"

УТВЕРЖДАЮ						
Проректор по учебной и научной работе						
работе	-					
Лейфа	А.В. Лейфа					
« 1 » сентября	2023 г.					

РАБОЧАЯ ПРОГРАММА «ЭЛЕКТРОДИНАМИКА. РАСПРОСТРАНЕНИЕ РАДИОВОЛН»

Направле	Направление подготовки 03.03.02 Физика					
Направле	енность ((профиль) об	5разов	ательной программы –		
Квалифии	кация вь	пускника –	Бакал	авр		
Год набој	pa – 2023	3				
Форма об	бучения	– Очная				
Курс 2,3 Семестр 4,5						
Экзамен 4 сем Зачет с оценкой 5 сем						
Общая трудоемкость дисциплины 252.0 (академ. час), 7.00 (з.е)						

Составитель О.В. Зотова, доцент, канд. физ.-мат. наук Инженерно-физический факультет Кафедра физики

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 03.03.02 Физика, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 07.08.20 № 891

Рабочая программа обсуждена на заседани	ии кафедры физики
01.09.2023 г. , протокол № 1	
Заведующий кафедрой Стукова	Е.В. Стукова
СОГЛАСОВАНО	СОГЛАСОВАНО
Учебно-методическое управление	Выпускающая кафедра
Чалкина Н.А. Чалкина	Стукова Е.В. Стукова
« 1» сентября 2023 г.	« 1» сентября 2023 г.
СОГЛАСОВАНО	СОГЛАСОВАНО
Научная библиотека	Центр цифровой трансформации и технического обеспечения
Петрович О.В. Петрович	Тодосейчук А.А. Тодосейчук

« 1 »

сентября

2023 г.

« 1 »

сентября

2023 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Формирование научного мировоззрения и современного физического мышления в области электромагнитных явлений. Приобретение навыков самостоятельной постановки и решения задач классической электродинамики. Развитие способностей применения специализированных знаний при решении профессиональных задач.

Задачи дисциплины:

- освоить математический аппарат и методы электродинамического описания процессов в области электромагнитных явлений;
- сформировать фундаментальные знания в области классической теории электромагнитного поля посредством изучения законов, составляющих основу теории Максвелла;
- раскрыть физический смысл уравнений Максвелла для электромагнитного поля в вакууме и применить макроскопический подход к описанию электромагнитного поля в средах;
- сформировать фундаментальные знания в области теории процессов излучения электромагнитных волн и их распространения в свободном пространстве и направляющих системах:
- изучить физические представления и следствия специальной теории относительности, её четырехмерный математический аппарат, принцип релятивистской инвариантности законов электродинамики и записать уравнения Максвелла в четырехмерной форме.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Электродинамика. Распространение радиоволн» является одной из дисциплин модуля «Теоретическая физика» обязательной части учебного плана. Для успешного освоения данной дисциплины студентам необходимы знания и умения, приобретенные в результате изучения дисциплины «Общая физика», а также высокий

уровень математической подготовки, обеспечиваемый изучением дисциплин модуля «Математика»: «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Дифференциальные и интегральные уравнения, вариационное исчисление». Особую важность для успешного освоения курса имеет математическая дисциплина «Векторный и тензорный анализ», что обусловлено особой структурой основных объектов электродинамики, которые имеют полевую природу.

Знания и навыки, полученные при освоении дисциплины «Электродинамика. Распространение радиоволн», необходимы при последующем изучении дисциплин, таких как «Радиофизика и электроника», «Физика твердого тела», «Экспериментальные методы в физике», и др.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Общепрофессиональные компетенции и индикаторы их достижения

Код и наименование общепрофессиональной	Код и наименование индикатора достижения общепрофессиональной компетенции
компетенции	
физико- математических и (или) естественных наук в сфере	ИД-1 _{ОПК-1} Знает основные понятия и законы физики и других естественных наук, методы математического анализа, алгебры и геометрии. ИД-2 _{ОПК-1} Умеет решать стандартные профессиональные задачи с применением физикоматематических и естественнонаучных знаний, методов научного анализа и моделирования. ИД-3 _{ОПК-1} Владеет навыками теоретических и экспериментальных исследований в сфере профессиональной деятельности.

4. СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 7.00 зачетных единицы, 252.0 академических часов.

- 1 − № π/π
- 2 Тема (раздел) дисциплины, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- 4.1 Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- $4.3 \Pi 3$ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3		4					5	6	7			
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Введение. Математически е основы электродинами ки	4	6		8								4	Индивидуаль ное домашнее задание №1 Коллоквиум
2	Экспериментал ьные основы электродинами ки и уравнения электромагнитн ого поля	4	6										2	Коллоквиум Тест №1
3	Электромагнит ное поле в веществе	4	4										2	Коллоквиум Тест №2
4	Потенциалы поля и решения задач электродинами ки	4	4										2	Коллоквиум
5	Электростатиче ское поле	4	6		6								4	Индивидуаль ное домашнее задание №2. Коллоквиум.
6	Стационарное магнитное поле	4	6		6								2	Коллоквиум.
7	Квазистациона	4	6		6								2	Письменный

	рное электромагнитн ое поле													опрос
8	Переменное электромагнитн ое поле в вакууме	4	6		2								2	Письменный опрос
9	Электродинами ка в четырехмерном пространстве	4	8		6								2	Тест №3
11	Экзамен	4									0.3	35.7		
12	Уравнения Максвелла для электромагнит ных гармонических колебаний и энергетические соотношения в электромагнит ном поле	5	4		4								2	Письменный опрос. Коллоквиум.
13	Плоские электромагнит ные волны в неограниченны х средах	5	6		6								10	Коллоквиум. Индивидуаль ное домашнее задание №1.
14	Падение плоских электромагнит ных волн на границу раздела двух сред	5	6		6								10	Коллоквиум. Индивидуаль ное домашнее задание №2.
15	Электромагнит ные волны в направляющих системах	5	6		8								6	Коллоквиум. Индивидуаль ное домашнее задание №3.
16	Теория излучения электромагнит ных волн. Элементарные излучатели	5	6		6								7.8	Письменный опрос. Индивидуаль ное домашнее задание №4
17	Распространени е электромагнит ных волн в атмосфере Земли	5	6		4								4	Реферат
18	Зачет с оценкой	5								0.2				
	Итого		86	5.0	68	3.0	0.	.0	0.0	0.2	0.3	35.7	61.8	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Лекции

№ п/	Наименование темы	Содержание темы (раздела)
П	(раздела)	(Fusion as)
1	Введение. Математические основы электродинамики	Электромагнитные взаимодействия и область их применения. Роль электродинамики в современной физической картине мира. Связь с другими дисциплинами. Системы единиц. Классическая электродинамика и ее применение в науке и технике, перспективы развития. Основы векторного и тензорного анализа. Криволинейные координаты. Элементы объема и поверхности в криволинейных координатах. Векторное и скалярное поле. Интегральные теоремы. Дифференциальные векторные операторы. Дифференциальные операции второго порядка.
2	Экспериментальные основы электродинамики и уравнения электромагнитного поля	Электрическое поле. Электрическое смещение и электростатическая теорема Гаусса (интегральная и дифференциальная форма). Электрический ток. Закон Ома в дифференциальной форме. Закон сохранения заряда (уравнение непрерывности). Магнитное поле постоянного тока. Закон Био-Савара- Лапласа. Закон полного тока в интегральной и дифференциальной форме. Ток смещения. Обобщение закона полного тока для токов проводимости и смещения. Закон электромагнитной индукции Фарадея. Теорема Гаусса для магнитного поля, ее физический смысл. Фундаментальная система уравнений Максвелла в вакууме (интегральная и дифференциальная форма). Полнота системы. Единственность решений уравнений Максвелла. Закона сохранения энергии электромагнитного поля. Вектор Умова-Пойнтинга.
3	Электромагнитное поле в веществе	Электронная теория вещества. Система уравнений Масвелла-Лоренца. Усреднение микроскопических уравнений Максвелла в среде. Поляризация среды в электрическом поле. Средняя плотность тока и средняя плотность заряда в среде, их связь с векторами поляризации и намагниченности.
4	Потенциалы поля и решения задач электродинамики	Векторный и скалярный потенциалы. Описание электромагнитного поля с помощью потенциалов. Неоднозначность потенциалов. Уравнение Даламбера. Калибровка потенциалов (калибровочные соотношения). Уравнения для потенциалов поля в веществе. Система граничных условий для векторов поля и потенциалов. Пределы применимости уравнений связи. Единственность решения уравнений Максвелла. Прямая и обратная задачи электродинамики. Разделы электродинамики.
5	Электростатическое поле	Система уравнений Максвелла для статического

		приближения. Электростатическое поле, его потенциальный характер. Скалярный потенциал электростатического поля, его физический смысл и свойства. Уравнения Лапласа и Пуассона. Потенциал системы зарядов в вакууме на больших расстояниях от нее. Разложение потенциала по мультиполям. Мультипольные моменты. Дипольный момент. Поле диполя. Диполь в электрическом поле. Энергия взаимодействия системы неподвижных зарядов и энергия электростатического поля в диэлектриках. Свойства электростатического поля проводников. Поле вблизи поверхности проводника. Потенциал и емкость проводника, системы проводников, потенциальные и емкостные коэффициенты.
6	Стационарное магнитное поле	Уравнения Максвелла для стационарного приближения. Векторный потенциал поля стационарных токов в однородных и изотропных средах. Уравнение Лапласа- Пуассона для векторного потенциала. Закон Био- Савара-Лапласа. Магнитное поле системы движущихся зарядов на больших расстояниях. Магнитный момент тока. Энергия магнитного поля системы токов. Контур с током (магнитный диполь) во внешнем магнитном поле.
7	Квазистационарное электромагнитное поле	Условия квазистационарности. Уравнения Максвелла для квазистационарного приближения. Правила Кирхгофа для цепей переменного (квазистационарного) тока. Квазистационарные процессы в электрической цепи с постоянной эдс. Колебательный контур. Собственные колебания в контуре с R=0 и R□ 0. Векторная интерпретация и комплексное представление периодически изменяющихся электрических величин. Понятие о методе комплексных амплитуд. Вынужденные колебания. Закон Ома для цепи переменного тока. Резонанс. Система проводников с учетом самоиндукции и взаимоиндукции. Переменные поля и токи в массивных покоящихся проводниках. Скин- эффект: сущность явления и его качественное объяснение. Элементарная теория скин-эффекта.
8	Переменное электромагнитное поле в вакууме	Переменное электромагнитное поле. Электромагнитные поля в отсутствии зарядов и токов. Волновое уравнение (уравнение Даламбера) и его решение для плоских электромагнитных волн. Свойства электромагнитных волн. Уравнения поля для произвольно движущихся зарядов и его решение в виде запаздывающих потенциалов.
9	Электродинамика в четырехмерном	Экспериментальные обоснования специальной теории относительности. Постулаты специальной

	пространстве	теории относительности. Преобразования Лоренца для координат и времени. Интервал. Инвариантность физических законов относительно преобразований Лоренца. Четырехмерная геометрическая интерпретация преобразований Лоренца. Контравариантные и ковариантные компоненты векторов в четырёхмерном пространстве. Четырехмерный вектор мировой точки. Тензоры в четырёхмерном пространстве. Тензорные поля. Тензорные поля в механике: четыре-вектор скорости, четыре-вектор ускорения, четыре-вектор импульса материальной точки. Принцип наименьшего действия.
		Четырехмерный вектор силы. Связь энергии, импульса, массы и скорости релятивистской частицы. Действие для электромагнитного поля. Гауссова система единиц. 4- потенциал электромагнитного поля. Тензор электромагнитного поля. Преобразования напряжённостей электрического и
		магнитного полей при переходе от одной ИСО к другой. Инварианты поля. Уравнение движения заряда в электромагнитном поле в четырепространстве. Закон сохранения заряда в пространстве Минковского. Четырехмерная плотность тока. Уравнения Максвелла в четырехмерной форме. Плотность и поток энергии электромагнитного поля. Закон сохранения энергии электромагнитного поля. Тензор энергии и импульса электромагнитного поля. Смысл
10	Уравнения Максвелла для электромагнитных гармонических колебаний и энергетические соотношения в электромагнитном поле	1 1
11	Плоские электромагнитные волны в неограниченных средах	Однородное уравнение Гельмгольца. Плоские волны и их характеристики. Понятие характеристического сопротивления. Плотность потока мощности в плоской электромагнитной волне. Комплексный вектор Пойнтинга. Комплексная диэлектрическая и магнитная проницаемость. Классификация сред. Идеальные диэлектрики и идеальные проводники. Особенности распространения плоских электромагнитных волн в проводящих и диэлектрических средах.
12	Падение плоских электромагнитных волн на границу раздела двух сред	Поля на границах раздела сред. Граничные условия для векторов электрического поля. Граничные условия для векторов магнитного поля. Поляризация электромагнитных волн. Падение

		плоской электромагнитной волны на границу
		раздела двух сред без потерь. Формулы Френеля. Падение плоской электромагнитной волны на диэлектрическое полупространство с потерями. Неоднородные плоские волны. Приближенные граничные условия Леонтовича.
13	Электромагнитные волны в направляющих системах	Классификация направляющих систем. Падение плоских волн с параллельной и перпендикулярной поляризацией на идеально проводящую плоскость. Математическое представление и классификация направляемых волн: Е-, Н - и Т-волны. Структура и некоторые характеристики направляемых волн. Прямоугольный и круглый металлические волноводы. Решение двумерного уравнения Гельмгольца. Волны типа Е и типа Н. Критические частоты, дисперсионная характеристика волновода. Характеристическое сопротивление волновода. Характеристическое сопротивление волновода. Волноводы с волнами типа Т. Коаксиальный и полосковый волноводы. Затухание волн в полых металлических волноводах. Замедляющие структуры. Электромагнитные колебания в объемных резонаторах.
14	Теория излучения электромагнитных волн. Элементарные излучатели	Классическая теория излучения упруго-связанного электрона. Элементарный электрический излучатель — гармонический осциллятор (диполь Герца). Излучение гармонического осциллятора. Электромагнитное поле осциллятора вблизи него и в волновой зоне. Диаграммы направленности, сопротивление излучения, коэффициент направленного действия, поток энергии. Принцип перестановочной двойственности. Элементарный магнитный излучатель. Элемент Гюйгенса. Теорема эквивалентности. Условие излучения.
15	Распространение электромагнитных волн в атмосфере Земли	Влияние земной поверхности на распространение радиоволн. Параметры земной поверхности. Расстояние прямой видимости. Классификация моделей радиотрасс над земной поверхностью. Поле излучателя, поднятого над плоской поверхностью. Влияние сферичности Земли. Поле в непосредственной близости от поверхности земли и в земле. Дифракция радиоволн на препятствии. Строение и электродинамические параметры земной атмосферы (тропосферы и ионосферы). Основные закономерности распространения радиоволн в атмосфере. Преломление радиоволн. Виды тропосферной рефракции. Закон отражения радиоволн в ионосфере. Особенности распространения радиоволн различных диапазонов на реальных трассах. Область пространства, существенная для распространения радиоволн.

5.2. Практические занятия

Наименование темы	Содержание темы
Математические основы электродинамики	Основные формулы векторного анализа. Дифференциальные векторные операторы. Вычисление градиента, дивергенции, ротора. Дифференциальные операции второго порядка.
Электростатическое поле	Решения задач электростатики с помощью теоремы Гаусса и принципа суперпозиции.
Электростатическое поле	Решения задач электростатики методом интегрированием уравнений Лапласа и Пуассона.
Энергия электростатического поля	Решения задач. Определение энергии электростатического поля системы зарядов. Определение емкостных коэффициентов системы зарядов.
Постоянный электрический ток	Решение задач. Расчет параметров цепей постоянного тока с применением закона Ома и правил Кирхгофа. Определение сопротивления в линейных и объемных проводниках.
Магнитное поле постоянных токов	Решение задач. Расчет поля, созданного непрерывным распределением тока по поверхности или объему, с помощью закона полного тока и методом интегрирования уравнения Пуассона для векторного потенциала.
Энергия магнитного поля	Решение задач. Определение энергии магнитного поля тока: а) через плотность тока и векторный потенциал; б) через поток магнитной индукции. Определение коэффициентов самоиндукции и взаимоиндукции системы проводников.
Закон электромагнитной индукции	Решение задач. Определение эдс индукции и индукционного тока.
Квазистационарные процессы в цепях с постоянной эдс	Решение задач. Определение законов изменения заряда, тока и напряжения при подключении к постоянной эдс цепи: а) с емкостью, б) с индуктивностью, в) с индуктивностью и емкостью.
Вынужденные колебания. Переменные (квазистационарные) токи	Решение задач. Расчет параметров электрической цепи переменного (квазистационарного) тока с применением правил Кирхгофа и закона Ома. Импеданс. Расчет режима резонанса напряжений в цепи с реактивными элементами.
Переменное электромагнитное поле в вакууме	Решение задач. Расчет характеристик переменного электромагнитного поля в вакууме вдали от источников зарядов и токов с применением уравнений Максвелла и теоремы Пойнтинга.
Релятивистская механика	Решение задач. Энергия, импульс и скорость релятивисткой частицы. Связь энергии, импульса, массы и скорости релятивистской частицы. Закон сложения скоростей.

Релятивистская электродинамика	Решение задач. Преобразования Лоренца для составляющих электромагнитного поля в произвольной материальной среде. Определение электромагнитного поля релятивистской заряженной частицы. Определение характеристик движения релятивистской заряженной частицы во внешнем электромагнитном поле.
Уравнения электродинамики в комплексной форме. Баланс энергии при гармонических электромагнитных колебаниях.	Решение задач. Расчет характеристик переменного электромагнитного поля методом комплексных амплитуд.
Плоские электромагнитные волны в диэлектрических средах	Решение задач. Расчет характеристик плоских электромагнитных волн в идеальном диэлектрике и в диэлектрике с потерями. Определение характеристического (волнового) сопротивления среды.
Плоские электромагнитные волны в проводящих средах.	Решение задач. Расчет характеристик плоских электромагнитных волн в проводящей среде. Расчет затухания и глубины проникновения.
Краевые задачи электродинамики	Решение задач. Падение плоской волны на границу двух сред без потерь. Формулы Френеля. Полное отражение. Падение плоской электромагнитной волны на диэлектрическое полупространство с потерями. Неоднородные плоские волны.
Электромагнитные волны в прямоугольном волноводе	Решение задач. Определение типов ЭМВ, распространение которых возможно в прямоугольном волноводе заданных размеров. Определение характеристик ЭМВ, распространяющихся в прямоугольном волноводе. Определение оптимальных размеров волновода, для распространение ЭМВ с заданными характеристиками.
Электромагнитные волны в круглом волноводе	Решение задач. Определение типов ЭМВ, распространение которых возможно в круглом волноводе заданного размера. Определение характеристик ЭМВ, распространяющихся в круглом волноводе. Определение оптимального размера волновода, для распространение ЭМВ с заданными характеристиками.
Объемные резонаторы	Решение задач. Определение резонансных частот прямоугольных и круглых резонаторов для ЭМВ различных типов. Определение основной моды резонатора и ширины полосы пропускания. Добротность объемного резонатора.
Элементарные излучатели	Решение задач. Определение интенсивности электродипольного излучения. Расчет характеристик ЭМВ в дальней зоне, излучаемых элементарными излучателями (электрическим и магнитным).
Распространение	Семинар. Защита рефератов (доклады с

электромагнитных волн	презентациями).
различных диапазонов в	
атмосфере Земли	

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Введение. Математические основы электродинамики	Подготовка к практическим занятиям. Подготовка к коллоквиуму. Выполнение индивидуального домашнего задания №1. Подготовка к экзамену.	4
2	Экспериментальные основы электродинамики и уравнения электромагнитного поля	Подготовка к коллоквиуму. Подготовка к экзамену.	2
3	Электромагнитное поле в веществе	Подготовка к коллоквиуму. Работа с учебником. Самостоятельное изучение темы: "Электронная теория ориентационного механизма поляризации". Подготовка к экзамену.	2
4	Потенциалы поля и решения задач электродинамики	Подготовка к коллоквиуму. Подготовка к экзамену.	2
5	Электростатическое поле	Подготовка к практическим занятиям. Подготовка к коллоквиуму. Выполнение индивидуального домашнего задания №2. Подготовка к экзамену.	4
6	Стационарное магнитное поле	Подготовка к практическим занятиям. Подготовка к коллоквиуму. Подготовка к экзамену.	2
7	Квазистационарное электромагнитное поле	Подготовка к практическим занятиям. Подготовка к экзамену.	2
8	Переменное электромагнитное поле в вакууме	Подготовка к практическим занятиям. Подготовка к экзамену.	2
9	Электродинамика в четырехмерном	Подготовка к практическим занятиям. Подготовка к экзамену.	2

	пространстве		
10	Уравнения Максвелла для электромагнитных гармонических колебаний и энергетические соотношения в электромагнитном поле	Подготовка к практическим занятиям Подготовка к коллоквиуму Подготовка к зачету	2
11	Плоские электромагнитные волны в неограниченных средах	Подготовка к практическим занятиям Выполнение индивидуального домашнего задания №1 Подготовка к коллоквиуму Подготовка к зачету	10
12	Падение плоских электромагнитных волн на границу раздела двух сред	Подготовка к практическим занятиям Выполнение индивидуального домашнего задания №2 Подготовка к коллоквиуму Подготовка к зачету	10
13	Электромагнитные волны в направляющих системах	Подготовка к практическим занятиям Выполнение индивидуального домашнего задания №3 Подготовка к коллоквиуму Подготовка к зачету	6
14	Теория излучения электромагнитных волн. Элементарные излучатели	Подготовка к практическим занятиям Выполнение индивидуального домашнего задания №4 Подготовка к зачету	7.8
15	Распространение электромагнитных волн в атмосфере Земли	Подготовка реферата Подготовка к зачету	4

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для проведения лекционных занятий используются аудитории, оснащенные мультимедиа проекционным оборудованием и интерактивной доской. Чтение лекций сопровождается презентациями.

Практические занятия по курсу «Электродинамика. Распространение радиоволн» предназначены для формирования у студентов навыка решение задач, возникающих перед исследователем, разработчиком конкретных физических моделей и конструкций. На практические занятия выносятся наиболее важные разделы курса. Преподаватель совместно со студентами обсуждает особенности построения алгоритма решения данного класса задач, а также подходы к решению каждой конкретной задачи. самостоятельно реализуют разработанный алгоритм, обсуждаются полученные результаты. На каждом занятии рассматривается несколько задач в рамках обозначенной темы, часть из которых решается с подробным студенты обсуждением, остальные задачи выполняют самостоятельно (индивидуальные задания). Так же практических домашние на занятиях осуществляется текущий контроль знаний студентов по отдельным разделам и темам курса в виде: коллоквиума (проверка знаний теоретического материала) и тестирования или письменного опроса (проверка знаний понятийного аппарата, основных законов и формул).

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и иные материалы, необходимые для оценки знаний, умений и навыков, характеризующих этапы формирования компетенций, а так же методические материалы, определяющие процедуры оценивания, знаний, умений и навыков отражены в фонде оценочных средств по дисциплине «Электродинамика. Распространение радиоволн».

Примерные вопросы к экзамену (4 семестр)

- 1.Скалярные поля. Градиент и его физический смысл. Правила вычисления градиента. Градиент в различных системах криволинейных координат.
- 2. Векторные поля. Поток векторного поля. Дивергенция, её физический и геометрический смысл. Вычисления дивергенции. Дивергенция в различных системах криволинейных координат. Теорема Остроградского -Гаусса.
- 3. Циркуляция векторного поля. Вектор-ротор (физический и геометрический смысл). Правила вычисления ротора. Ротор в различных системах криволинейных координат. Теорема Стокса.
- 4. Дифференциальные операторы Гамильтона и Лапласа. Выражения градиента, дивергенции и ротора через оператор Гамильтона. Дифференциальные операции второго порядка.
- 5. Экспериментальные основы электродинамики. Закон Кулона. Электрическое смещение и электростатическая теорема Гаусса. Дифференциальная форма теоремы Гаусса.
- 6. Электрический ток. Понятие о плотности тока. Закон Ома в дифференциальной форме. Закон сохранения заряда.
- 7. Закон Био Савара Лапласа. Закон полного тока в интегральной и дифференциальной форме. Токи смещения. Обобщение закона полного тока для токов проводимости и токов смещения.
- 8. Закон электромагнитной индукции Фарадея. Дифференциальная форма закона электромагнитной индукции. Теорема Гаусса для магнитного поля, ее физический смысл.
- 9. Уравнения Максвелла в вакууме как обобщение опытных фактов. Система уравнений

Максвелла в интегральной и дифференциальной форме. Полнота системы.

- 10. Вывод закона сохранения энергии электромагнитного поля из общего уравнения баланса энергии. Понятие о векторе Умова-Пойнтинга.
- 11. Электронная теория вещества. Система уравнений Максвелла
 Поляризация вещества. Механизмы поляризации.
- 12. Намагничивание вещества. Токи свободных и связанных зарядов. Плотность токов смещения и вектор намагниченности. Природа магнитных свойств вещества. Усредненная система уравнений Максвелла -Лоренца.
- 13. Граничные условия для векторов Е и D.
- 14. Граничные условия для векторов В и Н.
- 15. Описание электромагнитного поля с помощью потенциалов. Векторный и скалярный потенциалы. Уравнения Даламбера. Калибровка потенциалов (калибровочные соотношения).
- 16. Прямая и обратная задачи электродинамики. Единственность решения уравнений Максвелла. Разделы электродинамики.
- 17. Уравнения электростатики. Потенциальность электростатического поля. Скалярный потенциал, его физический смысл и свойства. Уравнения Лапласа и Пуассона.
- 18. Потенциал системы точечных зарядов. Потенциал непрерывно распределенных зарядов. Потенциал системы точечных зарядов на больших расстояниях от нее (метод разложения на мультиполи).
- 19. Поле диполя. Диполь в электрическом поле.
- 20. Энергия взаимодействия системы неподвижных зарядов как энергия

электростатического поля в диэлектриках.

- 21. Свойства электростатического поля проводников. Поле вблизи поверхности проводника Металлический экран. Потенциал и емкость проводника. Энергия электростатического поля системы проводников.
- 22. Электродинамика стационарного электромагнитного поля. Условия существования постоянного тока. Закон Ома для неоднородного участка цепи. Правила Кирхгофа.
- 23. Система уравнений Максвелла для магнитного поля постоянных токов. Векторный потенциал для стационарных токов. Вывод интегральной формы закона Био-Савара-Лапласса.
- 24. Магнитное поле системы движущихся зарядов на больших расстояниях.
- 25. Контур с током (магнитный диполь) во внешнем магнитном поле.
- 26. Энергия магнитного поля постоянных токов. Самоиндукция и взаимоиндукция.
- 27. Условия квазистационарности и уравнения Максвелла для квазистационрных электромагнитных полей. Правила Кирхгофа для цепей переменного тока.
- 28. Квазистационарные процессы в электрической цепи без индуктивности с постоянной эдс. Система токов без индуктивностей с постоянными эдс.
- 29. Индуктивность в контуре с постоянной эдс.
- 30. Колебательный контур. Собственные колебания в контуре с R=0 и R = 0.
- 31. Векторная интерпретация и комплексное представление периодически изменяющихся электрических величин. Понятие о методе комплексных амплитуд.
- 32. Вынужденные колебания. Закон Ома для цепи переменного тока. Резонанс в цепи переменного тока.
- 33. Система проводников с учетом самоиндукции и взаимоиндукции. Последовательное соединение индуктивных катушек. Две независимые катушки на общем сердечнике.
- 34. Скин- эффект. Сущность явления и его качественное объяснение. Элементарная теория скин-эффекта.
- 35. Переменное электромагнитное поле. Волновое уравнение и свойства электромагнитных волн.
- 36. Запаздывающие потенциалы на больших расстояниях от системы движущихся зарядов. Энергия, излучаемая системой зарядов в пределах малого телесного угла.
- 37. Излучение гармонического осциллятора.
- 38. Основные положения релятивистской кинематики. Преобразования Лоренца. Специальная теория относительности в четырёхмерном пространстве Минковского. Понятие о пространственно- временном интервале. Преобразования Лоренца в 4-пространстве. Контравариантные и ковариантные компоненты векторов в четырёхмерном пространстве.
- 39. Тензоры в четырёхмерном пространстве. Тензорные поля. Примеры тензорных полей в 4- пространстве. Тензорные поля в механике: 4- вектор скорости, 4- вектор ускорения, 4-импульс материальной точки.
- 40. 4-потенциал электромагнитного поля. Тензор электромагнитного поля.
- 41. Преобразования напряжённостей электрического и магнитного полей при переходе от одной ИСО к другой. Инварианты поля.
- 42. Уравнение движения заряда в электромагнитном поле в 4-пространстве. 4- вектор силы
- 43. Закон сохранения заряда в пространстве Минковского. Четырехмерная плотность тока
- 44. Уравнения Максвелла в четырехмерной форме.
- 45. Плотность и поток энергии электромагнитного поля. Закон сохранения энергии электромагнитного поля.
- 46.Тензор энергии и импульса электромагнитного поля. Смысл различных компонент. Приобретение навыков самостоятельной постановки и решения задач классической электродинамики.

Примерные вопросы к зачету с оценкой (5 семестр)

- 1. Определение электромагнитного поля. Векторы электрического и магнитного поля. Закон Ома в дифференциальной форме. Полный ток. Уравнения Максвелла в дифференциальной и интегральной формах.
- 2. Классификация сред, материальные уравнения. Граничные условия для электромагнитного поля.
- 3. Метод комплексных амплитуд. Уравнения Максвелла для гармонических колебаний. Комплексные проницаемости.
- 4. Принцип перестановочной двойственности. Лемма Лоренца.
- 5. Энергия электромагнитного поля. Уравнение баланса энергии для электромагнитного поля. Вектор Пойнтинга.
- 6. Движение энергии в электромагнитном поле. Средний баланс энергии в случае гармонических колебаний.
- 7. Уравнение Гельмгольца для среды без потерь. Его решение. Волновое число и волновой вектор. Фронт волны.
- 8. Уравнения Максвелла для плоской однородной волны. Взаимная ориентация векторов поля и волнового вектора в среде без потерь. Волновое (характеристическое) сопротивление.
- 9. Поляризация плоской электромагнитной волны.
- 10. Электромагнитные волны в средах с потерями. Коэффициент затухания.
- 11. Волновое число в поглощающих средах. Волны в диэлектрике. Волны в проводнике. Поверхностный эффект.
- 12. Нормальное падение плоской волны на границу двух сред. Формулы Френеля.
- 13. Наклонное падение плоской волны на границу двух сред. Законы Снеллиуса. Формулы Френеля. Угол Брюстера.
- 14. Явление полного внутреннего отражения и его применение. Неоднородные плоские волны.
- 15. Падение плоской электромагнитной волны на диэлектрическое полупространство с потерями. Приближенные граничные условия Леонтовича.
- 16. Понятие о направляющих системах. Условия распространения электромагнитных волн в направляющих системах. Критическая частота, длина волны в линии передачи, фазовая скорость.
- 17. Связь между продольными и поперечными составляющими поля в однородной направляющей системе. Классификация направляемых волн.
- 18. Прямоугольный металлический волновод. Волны типа Е, их характеристики и структура поля.
- 19. Прямоугольный металлический волновод. Волны типа Н, их характеристики и структура поля.
- 20. Основная волна прямоугольного волновода, ее характеристики, структура поля и токов. Мощность, переносимая основной волной через поперечное сечение волновода.
- 21. Круглые волноводы. Волна основного типа и ее характеристики.
- 22. Волноводы с волнами типа Т. Коаксиальный и полосковый волноводы.
- 23. Элементарный электрический излучатель.
- 24. Исследование поля электрического диполя. Поле в ближней зоне. Поле в дальней зоне.
- 25. Элементарный магнитный излучатель.
- 26. Понятие явления дифракции электромагнитных волн. Приближение Гюйгенса-Кирхгофа в описании явления дифракции. Зоны Френеля.
- 27. Область пространства, существенная при распространении радиоволн.
- 28. Классификация моделей радиотрасс над земной поверхностью.
- 29. Поле излучателя, поднятого над плоской поверхностью. Учет сферичности Земли при распространении радиоволн в зоне освещенности. Приведенные высоты.
- 30. Структура поля излучения вертикального диполя при низко расположенных антеннах. Формула Шулейкина-Ван-дер-Поля.

- 31. Состав и электрические параметры тропосферы. Индекс преломления. Явление рефракции. Эквивалентный радиус Земли. Виды тропосферной рефракции.
- 32. Строение ионосферы. Физические причины образования в ионосфере ионизированных слоев. Электрические параметры ионосферы. Отражение и преломление радиоволн в ионосфере.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) литература
- 1. Барышников, Сергей Васильевич. Электродинамика [Электронный ресурс]: учеб. пособие / С. В. Барышников, О. В. Зотова, Е. В. Стукова; Амур. гос. ун-т, Инженер.-физ. фак., Каф. физики. Благовещенск: АмГУ, 2021. 140 с. Б. ц. Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/11709.pdf
- 2. Бредов, М. М. Классическая электродинамика: учебное пособие / М. М. Бредов, В. В. Румянцев, И. Н. Топтыгин. 2-е изд., испр. Санкт-Петербург: Лань, 2022. 400 с. ISBN 5-8114-0511-1. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/book/210194 Режим доступа: для авториз. пользователей.
- 3. Ландау, Лев Давидович. Теоретическая физика [Текст]: в 10 т: учеб. пособие: рек. Мин. обр РФ/ Л. Д. Ландау, Е. М. Лифшиц. -М.: Физматлит. -2003. Т. 2: Теория поля/ под ред. Л. П. Питаевского. -8-е изд., стер.. -2003.-534 с.
- 4. Ландау, Лев Давидович. Теоретическая физика [Текст]: в 10 т: учеб. пособие: рек. Мин. обр РФ/ Л. Д. Ландау, Е. М. Лифшиц. М.: Физматлит. -2003. Т. 8: Электродинамика сплошных сред/ под ред. Л. П. Питаевского. -8-е изд., стер.- [Б.м.: б.и. -2003, 2005.-652 с.
- 5. Батыгин, В. В. Сборник задач по электродинамике и специальной теории относительности: учебное пособие / В. В. Батыгин, И. Н. Топтыгин. 4-е изд. Санкт- Петербург: Лань, 2022. 480 с. ISBN 978-5-8114-0921-1. Текст: электронный // Лань: электронно-библиотечная система. URL:https://e.lanbook.com/book/210440 Режим доступа: для авториз. пользователей.
- 6. Алексеев, А. И. Сборник задач по классической электродинамике: учебное пособие / А. И. Алексеев. 2-е изд. Санкт- Петербург: Лань, 2022. 320 с. ISBN 978-5-8114-0854-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https:// e.lanbook.com/ book/210092 Режим доступа: для авториз. пользователей.
- 7. Боков Л.А. Электродинамика и распространение радиоволн [Электронный ресурс]: учебное пособие / Л.А. Боков, В.А. Замотринский, А.Е. Мандель. Электрон.текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2013. 410 с. 978-5-86889-578-4. Режим доступа: http://www.iprbookshop.ru/72050.html
- 8. Потапов, Л. А. Электродинамика и распространение радиоволн: учебное пособие для вузов / Л. А. Потапов. 2- е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 196 с. (Высшее образование). ISBN 978-5-534-05369-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL:https:// urait.ru/bcode/492079
- 9. Электродинамика и распространение радиоволн: учебное пособие / Д. Ю. Муромцев, Ю. Т. Зырянов, П. А. Федюнин, О. А. Белоусов. 2- е изд., доп. СанктПетербург: Лань, 2022. 448 с. ISBN 978-5-8114-1637-0. Текст: электронный //Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/211646 —

Режим доступа: для авториз. пользователей.

- 10. Электродинамика [Электронный ресурс]: сб. учебн.-метод. материалов по изучению дисциплины для направления подготовки 03.03.02/ АмГУ, ИФФ; сост. О. В. Зотова, Благовещенск: Изд- во Амур. гос. ун- та, 2017. 25 с. Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/9896.pdf
 - б) программное обеспечение и Интернет-ресурсы

No	Наименование	Описание
1	Автоматизированная информационная библиотечная система «ИРБИС 64»	Лицензия коммерческая по договору №945 от 28 ноября 2011 года.
2	http://e.lanbook.com	Электронная библиотечная система «Издательства Лань», тематические пакеты: математика, физика, инженерно-технические науки, химия
3	http:// www.iprbookshop.ru/	Электронно- библиотечная система IPRbooks — научно- образовательный ресурс для решения задач обучения в России и за рубежом. Уникальная платформа ЭБС IPRbooks объединяет новейшие информационные технологии и учебную лицензионную литературу. Контент ЭБС IPRbooks отвечает требованиям стандартов высшей школы, СПО, дополнительного и дистанционного образования. ЭБС IPRbooks в полном объеме соответствует требованиям законодательства РФ в сфере образования.
4	https://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU - российский информационно- аналитический портал в области науки, технологии, медицины и образования

в) профессиональные базы данных и информационные справочные системы

No	Наименование	Описание
1	http:// dxdy.ru/ fizika-f2.html	Научный форум. Физика, Математика, Химия, Механика и Техника. Обсуждение теоретических вопросов, входящих в стандартные учебные курсы. Дискуссионные темы физики: попытки опровержения классических теорий и т.п. Обсуждение нетривиальных и нестандартных учебных задач. Полезные ресурсы сети, содержащие материалы по физике.
2	http:// www.mavicanet.ru/	MavicaNET - Многоязычный Поисковый Каталог. Теоретическая физика. Институты, лаборатории и др. организации, занимающиеся исследованиями в области теоретической физики. Может содержать все существующие подкатегории раздела физика, если источник связан с теоретическими исследованиями.
3	https://uisrussia.msu.ru/	Университетская информационная система РОССИЯ (УИС РОССИЯ).
4	https://www.runnet.ru	RUNNet (Russian University Network) - крупнейшая в Рос- сии научно- образовательная телекоммуникационная сеть, обладающая протяженной высокоскоростной магистральной инфраструктурой и международными каналами, обеспечивающими интеграцию с зарубежными научно-образовательными сетями (National Research and Education Networks, NREN) и с Интернет.
5	https:// minobrnauki.gov.ru/	Министерство науки и высшего образования Российской Федерации

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Занятия по дисциплине «Электродинамика. Распространение радиоволн» проводятся в

специальных помещениях, представляющих собой учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. Все помещения, в которых проводятся занятия, соответствуют действующим противопожарным правилам и нормам.

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к электронно- библиотечным системам и к электронной информационно- образовательной среде университета.

Самостоятельная работа обучающихся осуществляется в помещениях, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду университета.