Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Амурский государственный университет"

УТВЕРЖДАЮ							
Проректор по учебной и научной работе							
работе							
<u>Лейфа</u> А.В. Лейфа							
« 1 » сентября	2023 г.						

РАБОЧАЯ ПРОГРАММА «КОМПЬЮТЕРНАЯ ГРАФИКА»

Направление подготовки 01.03.02 Прикладная математика и информатика
Направленность (профиль) образовательной программы – Прикладная математика и информатика
Квалификация выпускника – Бакалавр
Год набора – 2023
Форма обучения – Очная
Курс 4 Семестр 8
Зачет 8 сем
Общая трудоемкость дисциплины 108.0 (академ. час), 3.00 (з.е)

Составитель В.О. Салмиянов, Младший научный сотрудник лаборатории математического моделирования сложных физических и биологических систем, нет

Факультет математики и информатики

Кафедра математического анализа и моделирования

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 01.03.02 Прикладная математика и информатика, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 10.01.18 № 9

Рабочая программа обсуждена	на заседании кафедр	ы математического	анализа и
моделирования			

01.09.2023 г. , протокол № 1

Заведующий кафедрой Максимова Н.Н. Максимова

СОГЛАСОВАНО

Учебно-методическое управление

Чалкина Н.А. Чалкина

« 1 » сентября 2023 г.

СОГЛАСОВАНО

Научная библиотека

______ О.В. Петрович « 1 » сентября 2023 г.

СОГЛАСОВАНО

Выпускающая кафедра

 Максимова
 Н.Н. Максимова

 « 1 » сентября
 2023 г.

СОГЛАСОВАНО

Центр цифровой трансформации и технического обеспечения

Тодосейчук А.А. Тодосейчук « 1 » сентября 2023 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Изучение современных методов создания компьютерной графики и формирование навыков их применения в профессиональной деятельности.

Задачи дисциплины:

- * изучение основных направлений развития информатики в области компьютерной графики;
- * формирование знаний об особенностях хранения графической информации;
- * освоение студентами методов компьютерной геометрии, растровой, векторной и трехмерной графики;
- * изучение особенностей современного программного обеспечения, применяемого при создании компьютерной графики;
- * формирование навыков работы с графическими библиотеками и в современных графических пакетах и системах.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Компьютерная графика» относится к вариативной части Блока 1. Дисциплины (модули), является дисциплиной по выбору. Для освоения дисциплины студенты используют знания, умения и виды деятельности, сформированные в процессе обучения в вузе на предшествующих курсах. Этот курс тесно связан с основными математическими и информационными дисциплинами, изученными ранее: линейная алгебра, математический анализ, языки и методы программирования. Освоение дисциплины «Компьютерная графика» является необходимой составляющей при проведении научно-исследовательской работы, для прохождения преддипломной практики, написания выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Профессиональные компетенции и индикаторы их достижения

Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции
ПК-1 Способен использовать математический аппарат, методологию программирования и современные компьютерные технологии для решения практических задач получения, хранения, обработки и передачи информации	математических методов, методологии программирования и современных компьютерных технологий; ИДК-2ПК-1 Умеет использовать математический аппарат, методологию программирования и современные компьютерные технологии для
ПК-2 Способен использовать математический аппарат и современные компьютерные средства для выполнения	

научно-	ИС	сследовательских	идк-2П	К-2	Подбирает,	реали	ізует	СІ	помощью
работ	ПО	закрепленной	языков	про	граммирован	ия и	(или)	В	пакетах
тематике			прикладі	ных	программ	и ана	ализир	ует	методы
			решения	ПО	ставленных	задач	при	ВЫ	полнении
			научно-	иссл	едовательски	х рабо	т по з	закр	епленной
			тематике	;					
					Владеет навы				
			исследов	ател	ьских работ г	ю закре	епленн	ой т	ематике.

4. СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3.00 зачетных единицы, 108.0 академических часов.

- 1 № π/π
- 2 Тема (раздел) дисциплины, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- 4.1 Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- $4.3 \Pi 3$ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3	4						5	6	7			
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Основные понятия компьютерной графики	8	2				4						13	Устный опрос.
2	Математически е основы компьютерной графики	8	2				4						13	Устный опрос.
3	Базовые вычислительны е и растровые алгоритмы	8	2				4						13	Устный опрос.
4	Методы и алгоритмы трехмерной графики	8	2				4						13	Устный опрос.
5	Кривые и криволинейные	8	2				4						13	Устный опрос.

	поверхности													
6	Зачет	8								0.2			12.8	Подготовка к зачёту.
	Итого		10	0.0	0.	.0	20	0.0	0.0	0.2	0.0	0.0	77.8	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Лекции

№ п/ п	Наименование темы (раздела)	Содержание темы (раздела)
1	Основные понятия компьютерной графики	Определение и задачи компьютерной графики. История развития и области применения компьютерной графики. Графическая система. Методы представления графической информации. Форматы файлов графики. Цветовые модели.
2	Математические основы компьютерной графики	Геометрическое моделирование. Координатный метод. Афинные преобразования.
3	Базовые вычислительные и растровые алгоритмы	Область визуализации и функция кадрирования. Отсечение. Операции с изображением на уровне растра. Инкрементные алгоритмы. Методы улучшения растровых изображений.
4	Методы и алгоритмы трехмерной графики	Визуализация трехмерных изображений. Виды проектирования. Удаление невидимых линий и поверхностей. Закрашивание поверхностей.
5	Кривые и криволинейные поверхности	Представление кривых линий и поверхностей. Сплайны

5.2. Лабораторные занятия

Наименование темы	Содержание темы					
Основные понятия компьютерной графики	Лабораторная работа №1 "Основы работы в графическом редакторе Corel Draw"					
Математические основы компьютерной графики	Лабораторная работа №2 "Векторная графика Corel Draw"					
Базовые вычислительные и растровые алгоритмы	Лабораторная работа №3 "Основы работы в графическом редакторе Photoshop"					
Методы и алгоритмы трехмерной графики	Лабораторная работа №4 "3d моделирование в Blender"					
Кривые и криволинейные поверхности	Лабораторная работа №5 "Анимация в Blender"					

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в
			академических
			часах
1	Основные понятия компьютерной графики	Подготовка к лабораторной работе, повторение пройденного материала	13
2	Математические основы	Подготовка к лабораторной работе, повторение пройденного материала	13

	компьютерной графики		
3	Базовые вычислительные и растровые алгоритмы	Подготовка к лабораторной работе, повторение пройденного материала	13
4	Методы и алгоритмы трехмерной графики	Подготовка к лабораторной работе, повторение пройденного материала	13
5	Кривые и криволинейные поверхности	Подготовка к лабораторной работе, повторение пройденного материала	13
6	Зачет	Подготовка к зачёту	12.8

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.02 – Прикладная математика и информатика реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

При преподавании дисциплины «Компьютерная графика» используются инновационные технологии (применение мультимедийного проектора при изучении отдельных тем, «мозговой штурм», «метод проектов», возможно использование ресурсов сети Internet и электронных учебников).

Практические занятия проводятся с использованием традиционной, активной и интерактивной форм обучения.

Интерактивные формы обучения используются на лекционных и практических занятиях:

- 1. Методы и алгоритмы трехмерной графики поверхности (Проблемная лекция)
- 2. Кривые и криволинейные поверхности (Метод группового решения задач)

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций, а так же методические материалы, определяющие процедуры оценивания знаний, умений и навыков отражены в фонде оценочных средств по дисциплине «Компьютерная графика».

Текущий контроль за аудиторной и самостоятельной работой обучаемых осуществляется во время проведения лекционных и лабораторных занятий посредством тестирования по изученным темам дисциплины, а также проверки выполнения лабораторных работ (отчет). Итоговый контроль осуществляется после успешного прохождения студентами текущего и промежуточного контроля в виде зачета.

Зачет сдается в конце семестра. Форма сдачи зачета – устная. Необходимым условием допуска к зачету является сдача всех лабораторных работ.

Примерный список вопросов к зачету:

- 1. Области применения компьютерной графики.
- 2. Тенденции развития современных графических систем.
- 3. Требования к системам компьютерной графики.
- 4. Классификация систем компьютерной графики с точки зрения инвариантности относительно класса объекта проектирования.
- 5. Виды обеспечения систем компьютерной графики.
- 6. Функциональные возможности систем компьютерной графики инженерной

направленности.

- 7. Системы координат, применяемые в компьютерной графике.
- 8. Технические средства компьютерной графики. 9. Форматы хранения графической информации.
- 10. Представление графической информации в системах растровой графики. Преобразование графических объектов в системах растровой графики.
- 11. Программные системы растровой графики преимущества и недостатки.
- 12. Представление графической информации в системах векторной графики. Преобразование графических объектов в системах векторной графики.
- 13. Программные системы векторной графики преимущества и недостатки.
- 14. Примитивы компьютерной графики.
- 15. Представление структуры и формы геометрических объектов.
- 16. 2D моделирование в компьютерной графике.
- 17. 3D моделирование в компьютерной графике
- 18. Параметризация в компьютерной графике.
- 19. Способы создания сборочного чертежа с помощью ЭВМ.
- 20. Процедуры преобразования геометрических моделей. Кадрирование, отсечение.
- 21. Способы представления реалистичных изображений.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) литература
- 1. Перемитина, Т. О. Компьютерная графика: учебное пособие / Т. О. Перемитина. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2012. 144 с. ISBN 978-5-4332-0077-7. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/13940.html (дата обращения: 20.06.2023). Режим доступа: для авторизир. пользователей
- 2. Колошкина, И. Е. Компьютерная графика: учебник и практикум для вузов / И. Е. Колошкина, В. А. Селезнев, С. А. Дмитроченко. 3- е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 233 с. (Высшее образование). ISBN 978-5-534-12341-8. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/490997 (дата обращения: 20.06.2023).
- 3. Инженерная 3D-компьютерная графика в 2 т. Том 1: учебник и практикум для вузов / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2022. 328 с. (Высшее образование). ISBN 978-5-534-02957-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https:// urait.ru/bcode/490995 (дата обращения: 20.06.2023).
- 4. Инженерная 3D-компьютерная графика в 2 т. Том 2: учебник и практикум для вузов / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева; под редакцией А. Л. Хейфеца. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2022. 279 с. (Высшее образование). ISBN 978-5-534-02959-8. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https:// urait.ru/bcode/490996 (дата обращения: 20.06.2023).
- 5. Молочков, В. П. Основы работы в Adobe Photoshop CS5: учебное пособие / В. П. Молочков. 3-е изд. Москва, Саратов: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 261 с. ISBN 978-5-4497-0345-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https:// www.iprbookshop.ru/89459.html (дата обращения: 20.06.2023). Режим доступа: для авторизир. пользователей

б) программное обеспечение и Интернет-ресурсы

№	Наименование	Описание
1	Corel DRAW Graphics Suite X7	Educational Lic (5-50) Сублицензионный договор №222 от 11.12.2015.

2	Blender	Бесплатное распространение по лицензии GNU GPL http:// download.blender.org/ release/ GPL- license.txt и Apache License, Version 2.0 https:// opensource.org/ licenses/Apache-2.0
3	https://www.amursu.ru/	Официальный сайт ФГОУ ВО «Амурский государственный университет»
4	https://e.lanbook.com/	Электронная библиотечная система «Издательства «Лань», тематические пакеты: математика, физика, инженерно-технические науки
5	https:// www.iprbookshop.ru/	Научно- образовательный ресурс для решения за- дач обучения в России и за рубежом. Уникальная платформа ЭБС IPRbooks объединяет новейшие информационные технологии и учебную лицензионную литературу.
6	https://urait.ru/	Образовательная платформа Юрайт — образовательный ресурс, электронная библиотека и интернет магазин, где читают и покупают электронные и печатные учебники авторов — преподавателей ведущих университетов для всех уровней профессионального образования, а также пользуются видео- и аудиоматериалами, тестированием и сервисами для преподавателей, доступными 24 часа 7 дней в неделю.

в) профессиональные базы данных и информационные справочные системы

№	Наименование	Описание
1	https://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU - российский информационно- аналитический портал в области науки, технологии, медицины и образования

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Занятия по дисциплине «Компьютерная графика» проводятся в специальных помещениях, представляющих собой учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. Все помещения, в которых проводятся занятия, соответствуют действующим противопожарным правилам и нормам.

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к электронно- библиотечным системам и к электронной информационно- образовательной среде университета.

Самостоятельная работа обучающихся осуществляется в помещениях, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду университета.

На занятиях применяется следующее техническое оборудование: ПЭВМ на базе процессора Intel Pentium, проектор.