Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Амурский государственный университет»

Упверждаю — А.В. Лейфа — 2020г.

РАБОЧАЯ ПРОГРАММА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА модуль «Математика»

Направление подготовки 03.03.02 — «Физика» Квалификация выпускника бакалавр Программа подготовки академический бакалавриат Год набора 2020 Форма обучения очная

Курс 3 Семестр 5

Зачет Семестр 5 (0,2 акад. часа)

 Лекции
 16 (акад. час.)

 Практические занятия
 18 (акад. час.)

 Самостоятельная работа
 73,8 (акад. час.)

Общая трудоемкость дисциплины 108(акад. час.), 3 зачетных единицы

Составитель Зайцева М. А., доцент, к. т. н.

Факультет математики и информатики Кафедра математического анализа и моделирования Рабочая программа составлена на основании Федерального государственного образовательного стандарта высшего образования по направлению подготовки 03.03.02 – Физика (уровень бакалавриата)

Раоочая программа оосуждена на зас	едании кафедры математического анализа и
моделирования «	
Рабочая программа одобрена на заседа 03.03.02 - Физика «	нии учебно-методического совета направления № /
СОГЛАСОВАНО Начальник учебно-методического управления ———————————————————————————————————	СОГЛАСОВАНО Заведующий выпускающей кафедрой (Е. В. Струкова) «
СОГЛАСОВАНО Директор научной библиотеки О.В. Тлетрово	ur
0. B. Tempobe	

1. ЦЕЛЬ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Цель преподавания дисциплины

Целью изучения дисциплины является теоретическая и практическая подготовка студентов по основам теории вероятностей и математической статистике.

Задачи изучения дисциплины:

- подготовка студентов для научной и практической деятельности в области теории вероятностей и математической статистики;
- формирование у студентов вероятностной составляющей математической культуры;
- создание теоретической базы для дальнейшего обучения студентов дисциплинам базовой части и профильных дисциплин;
- совершенствование навыков математического и логического мышления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Теория вероятностей и математическая статистика» относится к базовой части математического модуля. Для освоения дисциплины «Теория вероятностей и математическая статистика» обучающиеся используют знания, умения, навыки, способы деятельности и установки, сформированные в ходе изучения предметов «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Дифференциальные и интегральные уравнения, вариационное исчисление» на предыдущем уровне образования.

Освоение дисциплины «Теория вероятностей и математическая статистика» является необходимой основой для последующего изучения дисциплин базовой части и профильных дисциплин.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ(МОДУЛЯ)

Процесс изучения дисциплины направлен на формирование общепрофессиональной компетенции ОПК-2:

• способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей.

В результате изучения дисциплины студент должен:

знать (ОПК-2): основные понятия теории вероятностей и математической статистики (случайный эксперимент, событие, вероятность, случайная величина и др.), основные виды распределений случайных величин, методы решения вероятностных и статистических задач.

уметь(ОПК-2): применять полученные теоретические знания к решению типовых вероятностных задач для освоения теоретических основ и практического использования физических методов.

владеть(ОПК-2): навыками решения вероятностных и статистических задач с физическим содержанием.

4. МАТРИЦА КОМПЕТЕНЦИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ(МОДУЛЯ)

Разделы (темы)	Компетенции
Табдолы (толы)	ОПК-2
События и их вероятности.	+
Дискретные случайные величины и их распределения.	+
Общие случайные величины (с.в.).	+
Совместное распределение с.в.	+
Предельные законы вероятностей.	+
Статистические оценки и критерии.	+

5. СТРУКТУРА ДИСЦИПЛИНЫ (МОДУЛЯ) «Теория вероятностей и математическая статистика»

Общая трудоемкость дисциплины составляет 108 акад. часов, 3 зачетных единицы

№ п/п	Раздел (тема) дисциплины	Неделя семестра	Виды контактной работы, включая самостоятельную работу студентов и трудоемкость (в акад. часах)			тельную нтов	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
			Лек.	Прак.	Лаб.	Сам.раб.	
				зан.	зан.		
1	События и их						
	вероятности.	1-6	4	4		16	Индивидуальные задания
2	Дискретные						
	случайные величины						Индивидуальные задания
	и их распределения.	7-8	2	2		8	
3	Общие случайные						Индивидуальные задания
	величины (с.в.).	9-10	2	2		16	
4	Совместное						Индивидуальные задания
	распределение с.в.	11	2	2		10	_
5	Предельные законы						
	вероятностей.	12	1	2		10	Индивидуальные задания
6	Статистические	13-					
	оценки и критерии.	18	5	6		13,8	Индивидуальные задания
	Итого			18		73,8	Зачет 0,2 акад. часа

6.СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Лекции

- 1. События и их вероятности. Конечное вероятностное пространство.—События. Операции над событиями. Элементы комбинаторики. Классическое определение вероятностей. Геометрическая вероятность. Простейшие свойства вероятностей. Условные вероятности. Независимость событий. Формула полной вероятности. Схема Бернулли.
- 2. Дискретные случайные величины и их распределения. Счётное вероятностное пространство. Дискретные случайные величины и их распределения. Числовые характеристики случайных величин и их свойства. Независимость случайных величин. Индикаторы событий. Некоррелированность случайных величин. Предельные теоремы для схемы Бернулли.

- 3. *Общие случайные величины*. Общее определение вероятностного пространства.— Случайные величины (общий случай). Функция распределения.—Непрерывные случайные величиныиих характеристики. Стандартные дискретные и величиные прерывные распределения.
- 4. *Совместное распределение случайных величин*. Совместная функция распределения, плотность. Независимость с.в. О некоррелированных зависимых случайных величин.
- 5. *Предельные законы вероятностей*.— Неравенства Чебышёва.— Закон больших чисел. Центральная предельная теорема.
- Статистические оценки и критерии. Генеральная совокупность и выборка. Эмпирическая функция распределения. Гистограмма. Выборочное средние и выборочная дисперсия. Оценивание неизвестных параметров распределения. Понятие доверительного интервала. Вероятностные распределения, связанные с нормальным. Теорема Фишера для нормальных выборок. Доверительное оценивание параметров нормальных выборок. Нулевая гипотеза и уровень значимости. Критерии Колмогорова—Смирнова, χ². Статистическая и практическая значимость.

Темы практических занятий

- 1. События. Операции над событиями.
- 2. Классическое определение вероятностей.
- 3. Геометрическая вероятность.
- 4. Простейшие свойства вероятностей. Условные вероятности. Независимость событий.
- 5. Формула полной вероятности. Формула Байеса.
- 6. Схема Бернулли. Полиномиальная схема.
- 7 Асимптотические формулы для схемы Бернулли.
- 8. Числовые характеристики дискретных случайных величин и их свойства.
- 9. Непрерывные случайные величины и их характеристики.
- 10. Закон больших чисел. Предельные теоремы теории вероятностей.
- 11. Случайная выборка. Группировка выборки. Полигон и гистограмма. Эмпирическая функция распределения.
- 12. Числовые характеристики статистического распределения выборки.
- 13. Статистические оценки. Метод моментов.
- 14. Метод максимального правдоподобия для точечной оценки параметров распределения.
- 15. Доверительные интервалы.
- 16. Статистические гипотезы.
- 17. Проверка статистических гипотез.
- 18. Статистическое исследование зависимостей.

7. САМОСТОЯТЕЛЬНАЯ РАБОТА

Расчетно-графические работы состоят из индивидуальных заданий, темы которых приведены в графе – номер темы дисциплины

№ п/п	№ раздела (темы) дисциплины	Форма (вид) самостоятельной работы	Трудоёмко сть в акад. час.
1	1. События и их	Индивидуальное домашнее задание.	16
	вероятности		
2	2. Дискретные	Индивидуальное домашнее задание.	8
	случайные величины		

№ п/п	№ раздела (темы) дисциплины	Форма (вид) самостоятельной работы	Трудоёмко сть в акад. час.	
	и их распределения			
3	3. Общие случайные величины	Индивидуальное домашнее задание.	16	
4	4. Совместное распределение случайных величин	Индивидуальное домашнее задание.	10	
5	5. Предельные законы вероятностей	Индивидуальное домашнее задание.	10	
6	6. Статистические оценки и критерии	Индивидуальное домашнее задание.	13,8	
	Итого			

Перечень учебно-методического обеспечения для самостоятельной работы обучаю-

щихся по дисциплине:

1. Теория вероятностей и математическая статистика : сб. учеб.-метод. материалов для направления подготовки 03.03.02 / АмГУ, ФМиИ; сост. В. А. Труфанов. - Благовещенск: Изд-во Амур.гос. ун-та, 2017. - с.

Режим доступа:http://irbis.amursu.ru/DigitalLibrary/AmurSU Edition/10998.pdf

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 — «Физика» предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Занятия, проводимые в интерактивных формах, используются при выполнении на лекциях и практических занятиях, темы которых приведены в таблице

Наименование темы	Вид образовательной
	технологии
1.1. Случайные события и действия над ними.	Проблемная лекция,
	групповое решение задач
1.2. Классическое определение вероятностей.	Проблемная лекция
1.3. Формулы полной вероятности и Байеса.	Проблемная лекция
2.1. Примеры дискретных распределений.	«Мозговой штурм»
2.2. Неравенство Чебышёва	Проблемная лекция
3.1. Непрерывные случайные величины и их характеристики.	Устный опрос и решение
	задач
3.2. Примеры абсолютно непрерывных распределений.	Метод проектов
4.1. Совместная функция распределения, плотность.	Проблемная лекция
4.2. Коэффициент корреляции.	Групповое решение
	задач
5.3. Центральная предельная теорема.	Проблемная лекция
6.1. Понятие о выборке.	Проблемная лекция
6.3. Гистограмма.	Семинар - дискуссия
6.5. Критерий согласия Пирсона.	Групповое решение
	задач

9. ОЦЕНОЧНЫЕ СРЕДСТВАДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМОСВОЕНИЯ ДИСЦИПЛИНЫ

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций, а также методические материалы, определяющие процедуры оценивания знаний, умений и навыков отражены в ФОСе по дисциплине «Теория вероятностей и математическая статистика.

В течение семестра студенты разбирают задания, указанные преподавателем к каждому семинару, разбирают и повторяют основные понятия из теории. Предусмотрены индивидуальные задания и самостоятельные работы.

В качестве оценочных средств для текущего контроля успеваемости и для промежуточной аттестации используется балльно-рейтинговая система оценки знаний учащихся. Текущий контроль за аудиторной и самостоятельной работой обучаемых осуществляется во время проведения занятий посредством устного опроса по контрольным вопросам соответствующего раздела. Каждый вид работ, включая посещение лекционных занятий, оценивается определенным количеством баллов (п.13).

В конце семестра предусмотрен зачет.

Примерные вопросы зачета.

- 1. Конечное вероятностное пространство.
- 2. Понятие события.
- 3. Язык теории вероятностей.
- 4. Операции над событиями.
- 5. Классическое определение вероятности.
- 6. Основные формулы комбинаторики.
- 7. Геометрическая вероятность.
- 8. Простейшие свойства вероятностей.
- 9. Условные вероятности.
- 10. Независимость событий.
- 11. Схема испытаний Бернулли.
- 12. Формула Пуассона.
- 13. Формула полной вероятности. Формула Байеса.
- 14. Определение случайной величины (с.в.).
- 15. Дискретные с.в.
- 16. Непрерывные с.в. Функция плотности и ее свойства.
- 17. Функция распределения.
- 18. Математическое ожидание и дисперсия с.в.
- 19. Примеры дискретных распределений.
- 20. Примеры непрерывных распределений.
- 21. Свойства нормального распределения.
- 22. Теорема Муавра-Лапласа.
- 23. Закон больших чисел.
- 24. Основные задачи математической статистики.
- 25. Выборка. Оценка параметров выборки.
- 26. Выборочное среднее и выборочная дисперсия.
- 27. Методы построения оценок.
- 28. Понятие доверительного интервала.
- 29. Что называется ошибкой первого рода? Ошибкой второго рода?
- 30. Как изменяются вероятности совершения ошибок первого и второго рода при увеличении объема выборки?

- 31. Зависят ли вероятности совершения ошибок первого и второго рода от вида альтернативной гипотезы? От применяемого критерия?
- 32. Можно ли, применяя статистический критерий значимости, сделать вывод: «Проверяемая основная гипотеза верна»?
- 33. В чем состоит различие между построением двусторонней критической области и построением доверительного интервала для одного и того же параметра?
- 34. Что называется критерием согласия?
- 35. Являются ли критерии согласия статистическими критериями значимости?
- 36. Какими характерными особенностями обладают критерии согласия?
- 37. Указать достоинства и недостатки критерия согласия Пирсона.

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ(МОДУЛЯ)

- а) основная литература:
- 1. Буре В. М., Парилина Е. М. Теория вероятностей и математическая статистика: учебник / В. М.Буре, Е. М.Парилина—СПб.: Издательство «Лань», 2013. 416 с.[Электронный ресурс издательства «Лань»http://e.lanbook.com/books/element.php?pl1 id=10249].
 - б) дополнительная
- 1. Андронов А.М. Теория вероятностей и математическая статистика: учеб./ А.М.Андронов, Е.А.Копылов, Л.Я.Гринглаз.— СПб.: Питер, 2004. 461 с.
- 2. Письменный Д.Т. Конспект лекций по теории вероятностей и математической статистике [Текст]: [учеб.пособие] / Д. Т. Письменный. М.: Айриспресс, 2004.-253 с.
- 3. Труфанов В.А.Практикум по теории вероятностей и теории случайных процессов [Текст]: учеб. пособие / В. А. Труфанов, Т. В. Труфанова; АмГУ, ФМиИ. Благовещенск: Изд-во Амур.гос. ун-та, 2010. 100 с.
- 4. Труфанов В.А.Типовой расчет по курсу "Теория вероятностей и математическая статистика" [Текст]: учеб. метод. пособие: рек. ДВ РУМЦ / В.А. Труфанов, А.В. Рыженко; АмГУ, ФМИ. Благовещенск: Изд-во Амур.гос. ун-та, 2006.-112 с.
- 5. Хуснутдинов Р.Ш. Сборник задач по курсу теории вероятностей и математической статистикистатистики: Учебное пособие. 2-е изд.,испр. —СПб.: Издательство «Лань», 2014. 320 с.

Электронный ресурс изд. «Лань» http://e.lanbook.com/books/elment.php?pl1_id=53676

6. Семенчин Е.А. Теория вероятностей в примерах и задачах: учеб.пособие: рек. УМО/ Е.А. Семенчин. – СПб.: Лань, 2007. – 352 с.

в) программное обеспечение и Интернет-ресурсы

$N_{\underline{0}}$	Перечень программного		Реквизиты подтверждающих документов
	обеспечения		
	(обеспеченного лицензией)		
1	Операционная система	MS	DreamSparkPremiumElectronicSoftwareDelivery (3
	Windows 7 Pro,		years) Renewal по договору - Сублицензионный
			договор № Tr000074357/KHB 17 от 01 марта 2016
			года

No	Наименование ресурса	Краткая характеристика	
1	http://www.amursu.ru	Имеются ресурсы электронной библиотеки	
		АмГУ	
2	http://www.iprbookshop.ru/	Электронно – библиотечная система чтение online», чтение offline, в которой собраны электронные учебники, справочные и учебные пособия по гуманитарным, естественным и точным наукам. (Доступ на сайт после регистрации в библиотеке АмГУ)	
3	http://e.lanbook.com/books/	Собраны коллекции книг ведущих издательств учебной и научной литературы, а также вузовских издательств, сгруппированные по основным облас-тям знаний. (Доступ на сайт из библиотеки АмГУ)	

г) профессиональные базы данных и информационные справочные системы:

	1) профессиональные оазы данных и информационные справочные системы:					
№	Адрес	Название, краткая характеристика				
1	HYPERLINK	— поисковая система по полным текстам научных				
	"	публикаций всех форматов и дисциплин.				
2	https://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU -				
		российский информационно-аналитический портал в				
		области науки, технологии, медицины и образования				
3	HYPERLINK	Национальный корпус русского языка.				
	"http://www.ruscorpora.ru/	Информационно-справочная система, основанная на				
		собрании русских текстов в электронной форме				
4	HYPERLINK	Полнотекстовый архив ведущих западных научных				
	"	журналов на российской платформе Национального				
	h	электронно-информационного консорциума (НЭИКОН)				
5	https://uisrussia.msu.ru/	Университетская информационная система РОССИЯ				
		(УИС РОССИЯ).				
6	HYPERLINK	Информационно-коммуникационные технологии в				
	"http://www.ict.edu.ru/abo	образовании – федеральный образовательный портал,				
	u	обепечивающий информационную поддержку				
	t	образования в области современных информационных				
		и телекоммуникационных технологий, а также				
		деятельности по применению ИКТ в сфере				
		образования.				
7	HYPERLINK	Сайт «Информика». Обеспечивает информационную				
	"	поддержку всестороннего развития и продвижения				
	h	новых информационных технологий в сферах				
	t	образования и науки России				

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ(МОДУЛЯ)

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в лекционных и практических занятиях, при выполнении расчетных заданий. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Советы по планированию и организации времени, необходимого для изучения дисциплины.

Рекомендуется следующим образом организовать время, необходимое для изучения лисшиплины:

Изучение конспекта лекции в тот же день, после лекции -10-15 минут.

Изучение конспекта лекции за день перед следующей лекцией – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю.

Подготовка к практическому занятию – 2 час.

Всего в неделю – 3 часа 30 минут.

Основной целью лекционных занятий является формирование у студентов системы компетенций по основным теоретическим аспектам данной дисциплины.

Описание последовательности действий студента (сценарий изучения дисциплины).

Для понимания материала и качественного его усвоения рекомендуется такая последовательность действий:

- 1. После прослушивания лекции и окончания учебных занятий, при подготовке к занятиям следующего дня, нужно сначала просмотреть и обдумать текст лекции, прослушанной сегодня (10-15 минут).
- 2. При подготовке к лекции следующего дня, нужно просмотреть текст предыдущей лекции, подумать о том, какая может быть тема следующей лекции (10-15 минут).
 - 3. В течение недели выбрать время (1-час) для работы с литературой в библиотеке.
- 4. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и подходы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи.

Рекомендации по использованию материалов учебно-методического комплекса.

Рекомендуется использовать методические указания по курсу, текст лекций преподавателя (если он имеется).

Рекомендации по работе с литературой.

Теоретический материал курса становится более понятным, когда дополнительно к прослушиванию лекции и изучению конспекта, изучаются и книги. Легче освоить курс, придерживаясь одного учебника и конспекта. Рекомендуется, кроме «заучивания» материала, добиться состояния понимания изучаемой темы дисциплины. С этой целью рекомендуется после изучения очередного параграфа выполнить несколько простых упражнений на данную тему. Кроме того, очень полезно мысленно задать себе следующие вопросы (и попробовать ответить на них): о чем этот параграф?, какие новые понятия введены, каков их смысл?, что даст это на практике?.

Советы по подготовке к зачету.

Дополнительно к изучению конспектов лекции необходимо пользоваться учебником. Кроме «заучивания» материалазачета, очень важно добиться состояния понимания изучаемых тем дисциплины. С этой целью рекомендуется после изучения очередного параграфа выполнить несколько упражнений на данную тему. Кроме того, очень полезно мысленно задать себе следующие вопросы (и попробовать ответить на них): о чем этот параграф?, какие новые понятия введены, каков их смысл?, что даст это на практике?.

При подготовке к зачету нужно изучить теорию: определения всех понятий и подходы к оцениванию до состояния понимания материала и самостоятельно решить по нескольку типовых задач из каждой темы. При решении задач всегда необходимо уметь качественно интерпретировать итог решения.

Указания по организации работы по выполнению домашних заданий.

При выполнении домашних заданий необходимо сначала прочитать основные понятия и подходы по теме задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно

использовать, наметить план решения задачи, а затем приступить к расчетам и сделать качественный вывод.

Преподаватель, читающий дисциплину, ведет учет посещаемости и осуществляет контроль за выполнением самостоятельной работы. Текущий контроль заключается в мониторинге выполнения учебной программы дисциплины на аудиторных занятиях и оценке работы на практических занятиях.

Время для выполнения семестрового задания студент выбирает самостоятельно. Время на подготовку к экзамену студент регулирует самостоятельно.

В рамках текущего контроля работа студентов оценивается по следующим критериям:

- полнота ответов на теоретические вопросы дисциплины;
- правильность ответов на тестовые задания;
- верное решение задач;
- использование дополнительных материалов.

Промежуточный контроль заключается в защите семестрового задания и промежуточного тестирования.

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ(МОДУЛЯ)

Занятия по дисциплине проводятся в специальных помещениях, представляющих собой учебные аудитории для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. Все помещения, в которых проводятся занятия, соответствуют действующим противопожарным правилам и нормам.

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к электронно-библиотечным системам и к электронной информационно-образовательной среде университета.

Самостоятельная работа обучающихся осуществляется в помещениях, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

На занятиях применяется следующее техническое оборудование: ПЭВМ на базе процессора IntelPentium, проектор.

При изучении дисциплины студентами используются следующие информационные технологии и инновационные методы:

- электронный вариант учебно-методического комплекса;
- ресурсы электронной библиотечной системы:
- ресурсы Интернет;
- мультимедийная техника;
- студенты могут получать консультации по Skype, e-mail, ISQ, вебинару.

13. БАЛЛЬНО-РЕЙТИНГОВАЯ ОЦЕНКА ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Система оценки в баллах

№	Вид работы	Норма	Максимальное кол-во
			баллов
1	Подохудуму поменуй	0,25 балла/1 акад.	
	Посещение занятий	часауд.занятий	12
2	Индивидуальные задания	0–40 баллов	40
3	Домашние задания	0–8 баллов	18
4	Теоретический опрос	0–10 баллов	10

5	Зачет	0–20 баллов	20
	Всего за семестр	0–100 баллов	100 баллов

Учебная дисциплина «Теория вероятностей и математическая статистика» относится к категории дисциплин с зачетом и оценивается в 80 баллов за семестр. Пересчет рейтинговой оценки дисциплины проводится по шкале:

менее 51 балла – «не зачтено»; от 51 до 80 баллов – «зачтено».