Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Амурский государственный университет"

УТВЕРЖДАЮ			
Проректор по учебной и научной работе			
работе	•		
Лейфа	А.В. Лейфа		
4 июля 2024 г.	- 1		

РАБОЧАЯ ПРОГРАММА «ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ»

Направление подготовки 09.04.04 Программная инженерия						
Направленность (профиль) образовательной программы – Управление разработкой программного обеспечения						
Квалификация выпускника – Магистр						
Год набора – 2024						
Форма обучения – Очная						
Курс 2 Семестр 3						
Зачет 3 сем						
Общая трудоемкость дисциплины 108.0 (академ. час), 3.00 (з.е)						

Составитель Е.В. Дегтярёв, старший преподаватель, отсутствует Институт компьютерных и инженерных наук Кафедра информационных и управляющих систем

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 09.04.04 Программная инженерия, утвержденного приказом Министерства образования и науки Российской Федерации от 19.09.17 № 932

Рабочая программ систем	иа обсуждена на заседани	ии кафедры информаци	онных и управляющих			
17.04/2024 г.	_ , протокол № 8					
Заведующий каф	едрой Бушманов	А.В. Бушманов				
СОГЛАСОВАНО		СОГЛАСОВАНО				
Учебно-методичес	ское управление	Выпускающая кафедра				
чалкина	Н.А. Чалкина	Бушманов	А.В. Бушманов			
4 июл	я 2024 г.	4 июл	я 2024 г.			
СОГЛАСОВАНО		СОГЛАСОВАНО				
Научная библиоте	ека	Центр цифровой т технического обес				
Петрович	О.В. Петрович	Тодосейчук	А.А. Тодосейчук			
4 июл	– я 2024 г.	<u>————————————————————————————————————</u>				

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Целью дисциплины «Цифровая обработка сигналов» является теоретическое и практическое освоение методов и средств цифровой обработки сигналов, особенностей и преимуществ цифрового представления сигналов, изучение алгоритмов цифровых преобразований, реализация цифровой обработки в телекоммуникационных, информационных системах и ее применение в различных областях науки, техники и производства.

Задачи дисциплины:

- Изучить методы математического описания линейных дискретных систем;
- ознакомиться с математическими и алгоритмическими методами проектирования систем цифровой обработки сигналов; научиться разрабатывать программные приложения для реализации систем цифровой обработки сигналов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Цифровая обработка сигналов» входит в блок дисциплин, формируемых участниками образовательных отношений Элективные дисциплины, обеспечивая профессиональную подготовку по направлению 09.04.04 «Программная инженерия» Для успешного освоения данной дисциплины необходимы знания, умения и навыки, приобретенные в результате освоения дисциплин учебного плана по направлению подготовки 09.04.04 «Программная инженерия» «Методология программной инженерии», «Методы вычислений», «Методы оптимизации».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1 Профессиональные компетенции и индикаторы их достижения

Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции
ПК-4. Владение навыками создания программного обеспечения для анализа, распознавания и обработки информации, систем цифровой обработки сигналов	обеспечения для анализа, распознавания и обработки информации, систем цифровой обработки сигналов

4. СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 3.00 зачетных единицы, 108.0 академических часов.

- 1 № π/π
- 2 Тема (раздел) дисциплины, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)

- **4.1** Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- 4.3 ПЗ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3		4					5	6	7			
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Математически е модели описаний одномерных и многомерных сигналов	3			2		2						14	Подготовка к практическо й работе. Выполнение и защита лабораторно й работы.
2	Преобразовани е Фурье в анализе одномерных и многомерных сигналов	3			4		4						14	Подготовка к практическо й работе. Выполнение и защита лабораторно й работы.
3	Статистическое описание дискретных изображений	3			2		2						14	Подготовка к практическо й работе. Выполнение и защита лабораторно й работы.
4	Дискретная обработка сигналов	3			6		6						14	Подготовка к практическо й работе. Выполнение и защита лабораторно й

														работы.
5	Двумерные методы линейной и нелинейной фильтрации изображений	3			4		4						15.8	Подготовка к практическо й работе. Выполнение и защита лабораторно й работы.
6	Зачет	3								0.2				Подготовка к практическо й работе. Выполнение и защита лабораторно й работы.
	Итого		0.	.0	18	3.0	18	3.0	0.0	0.2	0.0	0.0	71.8	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Практические занятия

Наименование темы	Содержание темы
Математические модели описаний одномерных и многомерных сигналов	Математические модели описаний одномерных и многомерных сигналов
Преобразование Фурье в анализе одномерных и многомерных сигналов	Двумерное преобразование Фурье в анализе одномерных и многомерных сигналов. Роль спектрального анализа в цифровой обработке сигналов. Свойства ДПФ. Построение спектра Фурье
Статистическое описание дискретных изображений	Статистическое описание дискретных изображений
Дискретная обработка сигналов	Дискретная линейная и нелинейная двумерная обработка сигналов. Двумерное дискретное преобразование Фурье. Свойства ДПФ. Дискретная линейная и нелинейная двумерная обработка сигналов.
Двумерные методы линейной и нелинейной фильтрации изображений	Двумерные методы линейной и нелинейной фильтрации изображений

5.2. Лабораторные занятия

Наимен	ование темы		Содержание темы					
Математическ описаний многомерных	одномерных		Математические сигналов	постановк	и задач в	обработке		
Преобразован	ие Фурье	В	Математическое	описание	одномерны	х сигналов.		

анализе одномерных и многомерных сигналов	Динамический диапазон звуковых волн. Одномерное непрерывное преобразование Фурье. Применение для обработки одномерных сигналов. Математическое описание двумерных сигналов. Определение среднего значения яркости цифрового изображения.
Статистическое описание дискретных изображений	Статистическое описание дискретных изображений
Дискретная обработка сигналов	Двумерное дискретное преобразование Фурье. Построение 3D спектра изображения. Двумерные унитарные преобразования. Синтез матриц преобразования Адамара и Хаара.
Двумерные методы линейной и нелинейной фильтрации изображений	Двумерная линейная фильтрация. Синтез масок низкочастотных фильтров. Двумерная линейная фильтрация. Синтез масок высокочастотных фильтров.

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Математические модели описаний одномерных и многомерных сигналов	Изучение учебной литературы. Выполнение практической и лабораторной работ, оформление отчета.	14
2	Преобразование Фурье в анализе одномерных и многомерных сигналов	Изучение учебной литературы. Выполнение практической и лабораторной работ, оформление отчета.	14
3	Статистическое описание дискретных изображений	Изучение учебной литературы. Выполнение практической и лабораторной работ, оформление отчета.	14
4	Дискретная обработка сигналов	Выполнение лабораторных работ, оформление отчетов.	14
5	Двумерные методы линейной и нелинейной фильтрации изображений	Выполнение лабораторных работ, оформление отчетов.	15.8

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе подготовки по дисциплине используется совокупность методов и средств обучения, позволяющих осуществлять целенаправленное методическое руководство

учебно-познавательной деятельностью магистров, в том числе на основе интеграции информационных и традиционных педагогических технологий. При реализации настоящей рабочей программы предусматриваются интерактивные и активные формы занятий, развивающих коммуникативные способности обучающихся, направленные на их привлечение к самостоятельной познавательной деятель- ности, вызывающих личностный интерес и проявлению мотивации к своей будущей профес- сиональной деятельности, способствующих осознанию социальной значимости своей буду- щей профессии. К активным формам проведения занятий, используемых при реализации дисциплины относятся: дискуссии по темам курса и поставленным научным проблемам, разбор конкретных ситуаций. На практических и лабораторных работах студенты знакомятся с конкретной проблемой, воспроизводят и анализируют ход ее решения, высказывают свои суждения. Рекомендуется использование информационных технологий при организации коммуникации со информации, представления выдачи рекомендаций консультирования по оперативным вопросам (электронная почта), использование мультимедиа-средств для проведения лекционных и лабораторных занятий.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Вопросы к зачету:

- 1. Понятие одномерных и двумерных сигналов. Основные отличия.
- 2. Области практического применения методов обработки одномерных сигналов. Акустическое обнаружение.
- 3. Области практического применения методов обработки изображений. Сейсмология.
- 4. Области практического применения методов обработки изображений. Электрокардиография. Рентгенография.
- 5. Физическая природа света. Характеристики волн. 6. Представление непрерывных изображений (детерминированное математическое описание).
- 7. Системы воспроизведения цветных и бесцветных изображений.
- 8. Двумерные системы. Функция импульсного отклика и получение выходного изображения на выходе линейной двумерной системы.
- 9. Двумерное преобразование Фурье. Свойства преобразования Фурье (ПФ).
- 10. Двумерное преобразование Фурье. Свойство разделимости двумерного ПФ.
- 11. Анализ линейных систем с помощью преобразования Фурье. (Теорема о свертке)
- 12. Дискретизация непрерывных изображений (процесс идеальной дискретизации). Спектр дискретизированного изображения.
- 13. Процесс восстановления непрерывных изображений из дискретизированных. Частотное условие для идеального восстановления изображения.
- 14. Квантование изображений. Задача об оптимальном положении уровня квантования.
- 15. Статистическое описание дискретных изображений. Построение двумерного распределения вероятностей (гистограммы первого и второго порядка).
- 16. Обзор методов цифровой обработки изображений. Методы обработки в частотной области. Методы обработки в пространственной области.
- 17. Математическое описание дискретных изображений. Алгебра матриц. Формулы для векторного представления изображений.
- 18. Дискретная линейная двумерная обработка. Обобщенный линейный оператор.
- 19. Дискретная линейная двумерная обработка. Дискретный оператор суперпозиции.
- 20. Двумерные унитарные преобразования. Дискретное преобразование Фурье (ДПФ).
- 21. Дискретное преобразование Фурье. Свойство разделимости двумерного ДПФ.
- 22. Преобразование Адамара и Хаара.
- 23. Разработка автоматизированной системы обработки двумерных сигналов с применением двумерной линейной обработки.
- 24. Дискретная линейная фильтрация. Высокочастотные шумоподавляющие фильтры.
- 25. Дискретная линейная фильтрация. Фильтры для подчеркивания границ.
- 26. Разработка автоматизированной системы обработки двумерных сигналов с применением линейной фильтрации.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- а) литература
- 1. Васюков, В. Н. Цифровая обработка сигналов: сборник задач и упражнений: учебное пособие / В. Н. Васюков. Новосибирск: Новосибирский государственный технический университет, 2018. 76 с. ISBN 978-5-7782-3572-4. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https:// www.iprbookshop.ru/91481.html. Режим доступа: для авторизир. пользователей
- 2. Иванова, В. Е. Цифровая обработка сигналов и сигнальные процессоры : учебное пособие / В. Е. Иванова, А. И. Тяжев ; под редакцией А. И. Тяжев. 2- е изд. Самара : Поволжский государственный университет телекоммуникаций и информатики, 2017. 253 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/75425.html . Режим доступа: для авторизир. пользователей
- 3. Коберниченко, В. Г. Основы цифровой обработки сигналов: учебное пособие / В. Г. Коберниченко. Екатеринбург: Издательство Уральского университета, 2018. 150 с. ISBN 978-5-7996-2464-4. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/106756.html. Режим доступа: для авторизир. пользователей
- 4. Кравченко, В. Ф. Цифровая обработка сигналов атомарными функциями и вейвлетами / В. Ф. Кравченко, Д. В. Чуриков; под редакцией В. Ф. Кравченко. Москва: Техносфера, 2018. 182 с. ISBN 978-5-94836-506-0. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https:// www.iprbookshop.ru/84710.html. Режим доступа: для авторизир. пользователей
- 5. Магазинникова, А. Л. Основы цифровой обработки сигналов / А. Л. Магазинникова. 4-е изд., стер. Санкт-Петербург: Лань, 2023. 132 с. ISBN 978-5-507-46133-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https:// e.lanbook.com/ book/298514 (дата обращения: 26.06.2024). Режим доступа: для авториз. пользователей.
- 6. Пасечников, И. И. Цифровая обработка сигналов: учебное пособие / И. И. Пасечников. Тамбов: ТГУ им. Г.Р.Державина, 2019. 156 с. ISBN 978-5-00078-261-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https:// e.lanbook.com/ book/137567. Режим доступа: для авториз. пользователей.
- 8. Умняшкин, С. В. Основы теории цифровой обработки сигналов: учебное пособие / С. В. Умняшкин. 6- е изд. Москва: Техносфера, 2021. 550 с. ISBN 978-5-94836-617-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/118606.html. Режим доступа: для авторизир. пользователей

б) программное обеспечение и Интернет-ресурсы

	. / 1 1	. 1 1 11			
№	Наименование	Описание			
1	MATLAB+SIMULINK	Academic classroom 25 по договору №2013.199430/949 от 20.11.2013.			
2	LibreOffice	Бесплатное распространение по лицензии GNU LGPL https://ru.libreoffice.org/about-us/license/			
3	Операционная система Linux	GNU-лицензия (GNU General Public License)			
4	http://www.IPRbooks.ru	Электронная библиотечная система «IPRbooks» содержит учебные материалы по гуманитарным, естественным и точным наукам			

5	https://e.lanbook.com/	ЭБС «Лань» — это крупнейшая политематическая база данных, включающая в себя контент сотен издательств научной, учебной литературы и научной периодики.
6	https://urait.ru	Образовательная платформа Юрайт – образовательный ресурс, электронная библиотека и интернет-магазин, где читают и покупают электронные и печатные учебники авторов – преподавателей ведущих университетов для всех уровней профессионального образования, а также пользуются видео- и аудиоматериалами, тестированием и сервисами для преподавателей

в) профессиональные базы данных и информационные справочные системы

№	Наименование	Описание
1	www.elibrary.ru	Крупнейший российский информационный портал в области науки, технологии, медицины и образования
2	https://www.scopus.com	Международная реферативная база данных научных изданий Scopus
3	https:// login.webofknowledge.c om	Международная реферативная база данных научных изданий Web of Science

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к библиотечным электронной информационноэлектронносистемам И К образовательной среде университета. Самостоятельная работа обучающихся осуществляется в помещениях, оснащенных компьютерной техникой с возможностью подключения к сети «Интернет» И обеспечением доступа в образовательную среду университета Практические занятия информационнопроводятся в аудитории, оборудованной проектором, экраном, учебной доской, ноутбуком. Техническое обеспечение - аудитория с мультимедийным обо-рудованием, которое используется в учебном процессе.