Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "Амурский государственный университет"

УТВЕРЖДАЮ	
Проректор по учебн работе	ой и научной
работе	•
Лейфа	_ А.В. Лейфа
31 мая 2024 г.	-

РАБОЧАЯ ПРОГРАММА «МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ»

Направление подготовки 01.04.02 Прикладная математика и информатика
Направленность (профиль) образовательной программы – Математическое и программное обеспечение информационных систем
Квалификация выпускника – Магистр
Год набора – 2024
Форма обучения – Очная
Курс 1 Семестр 2
Экзамен 2 сем
Общая трудоемкость дисциплины 144.0 (академ. час), 4.00 (з.е)

Составитель Н.Н. Максимова, доцент, канд. физ.-мат. наук Институт компьютерных и инженерных наук Кафедра математического анализа и моделирования

Рабочая программа составлена на основании Федерального государственного образовательного стандарта ВО для направления подготовки 01.04.02 Прикладная математика и информатика, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 10.01.18 № 13

Рабочая программа о моделирования	•		ии кафе	дры математич	еского анализа и		
01.02.2024 г. ,	протокол	I № 6					
Заведующий кафед	рой <u>N</u>	1 аксимова	Н.Н.	Максимова			
СОГЛАСОВАНО			C	ОГЛАСОВАНО)		
Учебно-методическо	е управле	ние	Вн	Выпускающая кафедра			
Чалкина І	Н.А. Чалк	ина		Максимова	Н.Н. Максимова		
31 мая 2	024 г.		<u>31 мая</u> 2024 г.				
СОГЛАСОВАНО			C	ОГЛАСОВАНО)		
Научная библиотека		•	Центр цифровой трансформации и технического обеспечения				

Тодосейчук А.А. Тодосейчук

31 мая 2024 г.

О.В. Петрович

31 мая 2024 г.

Петрович

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

освоение студентами теории и практики использования современных методов машинного обучения для решения задач анализа данных и формирование у студентов компетенций в области использования технологий машинного обучения.

Задачи дисциплины:

- * изучение типов задач, решаемых с помощью методов искусственного интеллекта, и их постановок;
- * изучение современных методов машинного обучения и интеллектуального анализа данных;
- * изучение инструментальных средств реализации алгоритмов машинного обучения;
- * решение задач реализации методов машинного обучения и критериев оценивания качества обучения;
- * получение практических навыков реализации методов машинного обучения.

2. МЕСТО УЧЕБНОГО ПРЕДМЕТА В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Методы машинного обучения» относится к обязательной части Блока 1. Дисциплины (модули) учебного плана, является дисциплиной по выбору.

Для освоения дисциплины обучающиеся используют знания, умения и виды деятельности, сформированные в процессе обучения в вузе (в рамках высшего образования по направлениям подготовки бакалавриата или специалитета). Курс тесно связан с основными математическими дисциплинами и дисциплинами цикла «Информатика и программирование».

Освоение дисциплины «Методы машинного обучения» является важной составляющей при изучении последующего курса «Программирование нейронных сетей на Python», а также для прохождения преддипломной практики, выполнения научно-исследовательской работы и написания выпускной квалификационной работы (магистерской диссертации) при использовании конструкций языка Python для решения профессиональных задач.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

3.1. Универсальные компетенции и индикаторы их достижения

Категория (группа) универсальных компетенций	Код и наименование универсальной компетенции	Код и наименование индикатора достижения универсальной компетенции
Самоорганизация и саморазвитие (в том числе здоровьесбережение)		ИД-1 УК-6. Знает основные принципы самовоспитания и самообразования, профессионального и личностного развития, исходя из этапов карьерного роста и требований рынка труда. ИД-2УК-6. Умеет планировать свое рабочее время и время для саморазвития. формулировать цели личностного и профессионального развития и условия их достижения, исходя из тенденций развития области профессиональной деятельности, индивидуальноличностных особенностей. ИД-3 УК-6. Имеет практический

опыт получения дополнительного образования, изучения дополнительных образовательных
программ. ИД-4УК-6. Умеет корректно
позиционировать результаты собственной исследовательской
деятельности в научно-образовательном пространстве вуза и РФ.

4. СТРУКТУРА УЧЕБНОГО ПРЕДМЕТА

Общая трудоемкость учебного предмета составляет 4.00 зачетных единицы, 144.0 академических часов.

- 1 − № π/π
- 2 Тема (раздел) учебного предмета, курсовая работа (проект), промежуточная аттестация
- 3 Семестр
- 4 Виды контактной работы и трудоемкость (в академических часах)
- 4.1 Л (Лекции)
- 4.2 Лекции в виде практической подготовки
- $4.3 \Pi 3$ (Практические занятия)
- 4.4 Практические занятия в виде практической подготовки
- 4.5 ЛР (Лабораторные работы)
- 4.6 Лабораторные работы в виде практической подготовки
- 4.7 ИКР (Иная контактная работа)
- 4.8 КТО (Контроль теоретического обучения)
- 4.9 КЭ (Контроль на экзамене)
- 5 Контроль (в академических часах)
- 6 Самостоятельная работа (в академических часах)
- 7 Формы текущего контроля успеваемости

1	2	3		4						5	6	7		
			4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9			
1	Введение в искусственный интеллект	2	2										4	Тестирование по теме
2	Классический Machine Learning	2	1				3						10	Тестирование по теме Выполнение лабораторной работы
3	Метрические алгоритмы: метод k- ближайших соседей	2	1				3						10	Тестирование по теме Выполнение лабораторной работы
4	Метрические	2	0.5				3						10	Тестирование

	алгоритмы для задач кластеризации: метод k средних													по теме Выполнение лабораторной работы
5	Логистическая регрессия	2	0.5				3						10	Тестирование по теме Выполнение лабораторной работы
6	Байесовская классификация	2	0.5				3						10	Тестирование по теме Выполнение лабораторной работы
7	Метод опорных векторов	2	0.5				3						10	Тестирование по теме Выполнение лабораторной работы
8	Экзамен	3									0.3	35.7	20	Подготовка к экзамену (выполнение учебного проекта)
	Итого		6.	.0	0.	.0	18	3.0	0.0	0.0	0.3	35.7	84.0	

5. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

5.1. Лекции

	Э.1. ЛЕКЦИИ	
№ п/ п	Наименование темы (раздела)	Содержание темы (раздела)
1	Введение в искусственный интеллект	Введение в искусственный интеллект и машинное обучение. История развития ИИ. Задачи, решаемые искусственным интеллектом. Области искусственного интеллекта. Типы задач машинного обучения. Виды машинного обучения. Творческие способности ИИ. ИИ в образовании. Проблемы МL (в каких задачах МL бессилен и бесполезен).
2	Классический Machine Learning	Три составляющие машинного обучения. Типы задач машинного обучения. Способы машинного обучения. Примеры задач. Метрики качества. Задача регрессии и линейные модели.
3	Метрические алгоритмы: метод k- ближайших соседей	Метрические алгоритмы и метрический классификатор. Метод k- ближайших соседей: формальное описание метода. Метрики качества в задачах бинарной классификации.
4	Метрические алгоритмы для задач кластеризации: метод k средних	Задача кластеризации. Метрические алгоритмы для задач кластеризации. Метод k средних. Метрики качества в задачах кластеризации.
5	Логистическая регрессия	Задача бинарной классификации и логистическая регрессия. Условия логистической регрессии. Метрики качества обучения.

6	Байесовская классификация	Байесовский классификатор и его виды. Вероятностная постановка задачи классификации. Наивный Байесовский классификатор.
7	Метод опорных векторов	Метод опорных векторов: формальное описание метода. Метод опорных векторов в задаче классификации. Разделяющая гиперплоскость и линейно разделимая выборка. Линейно неразделимая выборка.

5.2. Лабораторные занятия

Наименование темы	Содержание темы
Лабораторная работа 1	Классический Machine Learning и задача регрессии. Работа с линейными моделями. Библиотека sklearn. Обучение модели в sklearn. Ridge и Lasso регрессия. Lp регуляризация. Практика в Colab: обучение линейной модели (в т.ч. с Lasso и Ridge регуляризацией) в sklearn на данных fetch_california_housing.
Лабораторная работа 2	Метод k-ближайших соседей в библиотеке sklearn. Практика в Colab: обучение на сгенерированных данных, обучение на данных "Ирисы Фишера".
Лабораторная работа 3	Метод k средних в библиотеке sklearn. Практика в Colab: обучение на сгенерированных данных, обучение на данных "Ирисы Фишера", обучение на наборе данных load_breast_cancer.
Лабораторная работа 4	Логистическая регрессия в библиотеке sklearn. Практика в Colab: прогнозирование выполнения обязательств, прогнозирование типа рака молочной железы.
Лабораторная работа 5	Наивные байесовские классификаторы в библиотеке sklearn. Практика в Colab: простой детектор спама для SMS- сообщений, классификатор типа ириса, прогнозирование диабета.
Лабораторная работа 5	Метод опорных векторов в библиотеке sklearn. Практика в Colab: классификация на сгенерированных данных, многоранговая классификация на данных с типом ириса.

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ п/п	Наименование темы (раздела)	Содержание темы (раздела)	Трудоемкость в академических часах
1	Введение в искусственный интеллект	Тестирование по теме Выполнение лабораторной работы	4
2	Классический Machine Learning	Тестирование по теме Выполнение лабораторной работы	10
3	Метрические алгоритмы: метод k-	Тестирование по теме Выполнение лабораторной работы	10

	ближайших соседей		
4	Метрические алгоритмы для задач кластеризации: метод k средних	Тестирование по теме Выполнение лабораторной работы	10
5	Логистическая регрессия	Тестирование по теме Выполнение лабораторной работы	10
6	Байесовская классификация	Тестирование по теме Выполнение лабораторной работы	10
7	Метод опорных векторов	Тестирование по теме Выполнение лабораторной работы	10
8	Экзамен	Подготовка к экзамену (выполнение учебного проекта)	20

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки 01.04.02 – «Прикладная математика и информатика» реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

При преподавании дисциплины «Методы машинного обучения» используются как традиционные (лекция, проблемная лекция, лекция- семинар), так и инновационные технологии (применение мультимедийного проектора, семинар-дискуссия, «мозговой штурм», «метод проектов», возможно использование ресурсов сети Internet и электронных учебников). Лекционные занятия проводятся с использованием традиционной, активной и интерактивной форм обучения. Лабораторные занятия проводятся с использованием активных и интерактивных форм обучения.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков, характеризующих этапы формирования компетенций, а также методические материалы, определяющие процедуры оценивания знаний, умений и навыков отражены в фонде оценочных средств по дисциплине «Методы машинного обучения".

Текущий контроль за аудиторной и самостоятельной работой обучаемых осуществляется во время проведения лекционных и лабораторных занятий посредством устного опроса И тестирования ПО контрольным вопросам соответствующего также проверки ПО лабораторных работ. раздела, Промежуточный контроль осуществляется после успешного прохождения студентами текущего контроля в виде экзамена.

Экзамен сдается в конце учебного семестра. Форма сдачи экзамена – в виде учебного проекта. Необходимым условием допуска на экзамен является выполнение всех лабораторных работ.

Подготовка учебного проекта состоит из следующих шагов:

- подбор данных; источники данных: например, платформа Kaggle (https://www.kaggle.com/datasets);
- подбор и обучение алгоритма машинного обучения по этим данным;
- анализ качества обучения.

Формат отчета: ноутбук Colab с описанием набора данных, описанием алгоритма машинного обучения, результатами обучения.

После выполнения проекта устная защита с представлением результатов и опрос по теме

Примерные вопросы:

- 1. Виды задач машинного обучения.
- 2. Метрики качества в задачах машинного обучения.
- 3. Описание набора данных.
- 4. Предварительная обработка данных.
- 5. Разделение набора на обучающий и тестовый.
- 6. Описание алгоритма машинного обучения.
- 7. Анализ качества обучения нейронной сети.
- 8. Библиотеки для методов машинного обучения нейронной сети.

При защите отчета и опросе учитывается владение материалом, общее понимание предмета.

9. УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРЕДМЕТА

- а) литература
- 1. Буйначев, С. К. Основы программирования на языке Python: учебное пособие / С. К. Буйначев, Н. Ю. Боклаг; под редакцией Ю. В. Песин. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2014. 92 с. ISBN 978-5-7996-1198-9. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/66183.html (дата обращения: 29.05.2024). Режим доступа: для авторизир. пользователей
- 2. Воронов, М. В. Системы искусственного интеллекта: учебник и практикум для вузов / М. В. Воронов, В. И. Пименов, И. А. Небаев. 2- е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 268 с. (Высшее образование). ISBN 978-5-534-17032-0. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/544161 (дата обращения: 29.05.2024).
- 3. Демидова, Л. А. Интеллектуальный анализ данных на языке Python: учебнометодическое пособие / Л. А. Демидова. Москва: РТУ МИРЭА, 2021. 92 с. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/218693 (дата обращения: 29.05.2024). Режим доступа: для авториз. пользователей.
- 4. Котельников, Е. В. Введение в машинное обучение и анализ данных: учебное пособие / Е. В. Котельников, А. В. Котельникова. Киров: ВятГУ, 2023. 68 с. Текст: электронный // Лань: электронно- библиотечная система. URL: https://e.lanbook.com/ book/390698 (дата обращения: 30.05.2024). Режим доступа: для авториз. пользователей.
- 5. Основы искусственного интеллекта: практические работы по созданию и обучению искусственных нейронных сетей на языке Python: учебно-методическое пособие / Н. В. Маркина, Э. И. Беленкова, Г. А. Диденко [и др.]. Челябинск: ЮУГМУ, 2023. 72 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/ book/379403 (дата обращения: 29.05.2024). Режим доступа: для авториз. пользователей.
- 6.Платонов, А. В. Машинное обучение: учебное пособие для вузов / А. В. Платонов. Москва: Издательство Юрайт, 2024. 85 с. (Высшее образование). ISBN 978-5-534-15561-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/544780 (дата обращения: 30.05.2024).
- 7. Теория и практика машинного обучения: учебное пособие / В. В. Воронина, А. В. Михеев, Н. Г. Ярушкина, К. В. Святов. Ульяновск: Ульяновский государственный технический университет, 2017. 291 с. ISBN 978-5-9795-1712-4. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https:// www.iprbookshop.ru/106120.html (дата обращения: 30.05.2024). Режим доступа: для авторизир. пользователей

б) программное обеспечение и Интернет-ресурсы

№	Наименование	Описание
1	LibreOffice	Бесплатное распространение по лицензии GNU LGPL https://ru.libreoffice.org/about-us/license/

2	Google Chrome	Бесплатное распространение по лицензии google chromium http:// code.google.com/ intl/ ru/ chromium/ terms.html на условиях https://www.google.com/chrome/browser/privacy/eula_text.html.
3	Python 3	Бесплатное распространение по лицензии GNU GPL http://www.gnu.org/licenses/old-licenses/gpl-2.0.htm.
4	http://www.amursu.ru	Официальный сайт ФГБОУ ВО «Амурский государственный университет»
5	http://e.lanbook.com	Электронно- библиотечная система Издательство «Лань» — тематические пакеты: математика, физика, инженерно- технические науки. Ресурс, включающий в себя как электронные версии книг издательства «Лань» и других ведущих издательств учебной литературы, так и электронные версии периодических изданий по естественным, техническим и гуманитарным наукам.
6	http:// www.iprbookshop.ru	Электронно-библиотечная система IPRbooks – научно- образовательный ресурс для решения задач обучения в России и за рубежом. Уникальная платформа ЭБС IPRbooks объединяет новейшие информационные технологии и учебную лицензионную литературу. Контент ЭБС IPRbooks отвечает требованиям стандартов высшей школы, СПО, дополнительного и дистанционного образования.
7	https://urait.ru	Образовательная платформа Юрайт — образовательный ресурс, электронная библиотека и интернет-магазин, где читают и покупают электронные и печатные учебники авторов — преподавателей ведущих университетов для всех уровней профессионального образования, а также пользуются видео- и аудиоматериалами, тестированием и сервисами для преподавателей, доступными 24 часа 7 дней в неделю.
8	https:// colab.research.google.co m	Colaboratory — это облачная платформа от Google для продвижения технологий машинного обучения. На ней можно получить бесплатно виртуальную машину с установленными популярными библиотеками TensorFlow, Keras, sklearn, pandas и т.п.

в) профессиональные базы данных и информационные справочные системы

No	Наименование	Описание
1	https://www.runnet.ru	RUNNet (RussianUNiversityNetwork) — научно- образовательная телекоммуникационная сеть, обеспечивающими интеграцию с зарубежными научно- образовательными сетями (NationalResearchandEducationNetworks, NREN) и с Интернет.
2	https://scholar.google.ru/	GoogleScholar — поисковая система по полным текстам научных публикаций всех форматов и дисциплин.
3	https://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU - российский информационно- аналитический портал в области науки, технологии, медицины и образования

4	http:// www.ict.edu.ru/about	Информационно- коммуникационные технологии в образовании — федеральный образовательный портал, обеспечивающий информационную поддержку образования в области современных информационных и телекоммуникационных технологий, а также деятельности по применению ИКТ в сфере образования.
5	https://reestr.minsvyaz.ru	Единый реестр российских программ для электронных вычислительных машин и баз данных
6	http://www.informika.ru	Сайт «Информика». Обеспечивает информационную поддержку всестороннего развития и продвижения новых информационных технологий в сферах образования и науки России
7	http://www.mathnet.ru/	Math- Net.Ru. Общероссийский математический портал. Современная информационная система, предоставляющая российским и зарубежным математикам различные возможности в поиске информации о математической жизни в России.
8	https:// www.kaggle.com/datasets	Kaggle — система организации конкурсов по исследованию данных, а также социальная сеть специалистов по обработке данных и машинному обучению.

10. МАТЕРИАЛЬНО- ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОГО ПРЕДМЕТА

Занятия по дисциплине проводятся в специальных помещениях, представляющих собой учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, лабораторных работ, курсового проектирования, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания учебного оборудования.

Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. Все помещения, в которых проводятся занятия, соответствуют действующим противопожарным правилам и нормам.

Каждый обучающийся обеспечен индивидуальным неограниченным доступом к электронно- библиотечным системам и к электронной информационно- образовательной среде университета. Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

На занятиях применяется следующее техническое оборудование: ПЭВМ на базе процессора Intel Pentium, проектор. Лекции проводятся в стандартной аудитории, оснащенной в соответствии с требованиями преподавания теоретических дисциплин, включая мультимедиа-проектор. Лабораторные работы проводятся в компьютерном классе, рассчитанном на 10 посадочных рабочих мест пользователей, в котором установлен и применяется язык программирования Python. Данное оборудование и программное обеспечение применяется при изучении дисциплины.