Аннотация рабочей программы дисциплины «Вариационные методы в задачах проектирования ракетно-космической техники»

для специальности подготовки 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов специализация «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов»

1. Цели и задачи освоения дисциплины

Цель изучения дисциплины: приобретения теоретических и практических знаний, навыков и умений использования методов теории вариационного исчисления и оптимального управления.

Задачи Основные задачи курса на основе системного подхода:

- дать знания, выработать навыки и развить умения в области вариационного исчисления и оптимального управления.
 - научить решать аналитически и численно экстремальные задачи;
- строить математические экстремальные модели классического и современного типа;
- научить применять численные методы для решения задач с использованием современных ЭВМ и прикладных программ и различных языков программирования;
- овладение моделями оптимального управления в различных областях науки, техники.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины, и индикаторы их достижения

Общепрофессиональные компетенции и индикаторы их достижения

Категория (группа обще-	Код и наименование об-	Код и наименование индикатора дости-
профессиональных ком-	щепрофессиональной	жения общепрофессиональной компе-
петенций)	компетенции	тенции
	ОПК-1 Способен приме-	ИД-1 _{ОПК-1} Знать: теорию и основные за-
T	нять естественнонаучные	коны в области естественнонаучных и
	и общеинженерные зна-	общеинженерных дисциплин
	ния, методы математиче-	ИД-2 _{ОПК-1} Уметь:
Теоретические и практи-	ского анализа и моделиро-	- применять методы математического
ческие основы профессиональной деятельности	вания, теоретического и	анализа и моделирования в профессио-
	экспериментального ис-	нальной деятельности;
	следования в профессио-	- применять методы теоретического и
	нальной деятельности	экспериментального исследования в
		профессиональной деятельности

3. Содержание дисциплины

$N_{\underline{0}}$	Наименование темы	Содержание темы (раздела)
Π/Π	(раздела)	
1	Основные понятия	История возникновения вариационного исчисления, как раздела
	вариационного ис-	дифференциального и интегрального исчислений.
	числения	Задача о брахистохроне. Пример задачи оптимального управле-
		ния. Вариационная задача как задача оптимального управления.
		Задачи конечномерной оптимизации и задачи ВИ. Постановка
		основной задачи ВИ. Примеры задач. Функционал. Вариация ар-
		гумента. Вариация функционала. Сильная и слабая окрестности.
		є- окрестность п-го порядка кривой. Близость кривых. Расстояние
		между кривыми. Линейные функционалы. Локальный экстремум.
		Сильный и слабый экстремумы. Первое определение вариации
		функционала первого порядка. Второе определение вариации
		функционала первого порядка. Игольчатая вариация. Свойства

No	Наименование темы	Содержание темы (раздела)
п/п	паименование темы (раздела)	Содержанне темы (раздела)
	вариаций. Теорема о дифференцируемости функционалов. Нео	
		ходимое условие экстремума. Ряд Тейлора для функционалов.
		При-
	<u> </u>	меры.
2	Уравнения Эйлера	Уравнение Эйлера как необходимое условие экстремума. Основ-
		ная
		лемма вариационного исчисления. Вывод уравнения Эйлера для
		основной задачи вариационного исчисления. Частные случаи функционалов. Алгоритм решения задач. Методы и приёмы ре-
		шения задач. Применение уравнения Эйлера к известным задачам
		вариационного исчисления. Задача о кратчайшем расстоянии. За-
		дача о цепной линии. Задача о брахистохроне. Задача Пуанкаре.
		Задача
		Ньютона об обтекании тела вращения
3 ,	Достаточные усло-	Вторая вариация функционала. Условие знакопостоянства второй
	вия экстремума	вариации и достаточное условие экстремума. Поле экстремалей
		(собственное, центральное). С - дискриминанта. Сопряжённая
		точка. Условие Якоби включения экстремали в поле экстремалей.
		Достаточные условия (слабого, сильного) экстремума: Вейер-
4	Обобщения основ-	штрасса, Лежандра.
	ной задачи ВИ	Способы вычисления вариаций для различных видов функционалов. Функционалы, зависящие от нескольких независимых функ-
		ций. Функционалы, зависящие от производных высшего порядка.
		Функционалы, зависящие от функций нескольких переменных.
		Инвариантность уравнения Эйлера. Вариационные задачи со сво-
		бодными границами. Функционалы с подвижными границами.
		Условия трансверсальности. Задачи с односторонними вариация-
	_	ми. Задача Больца.
		Отражение экстремалей. Преломление экстремалей. Задача Боль-
	дов ВИ к решению естественнонаучных	ца. Связь задач Лагранжа и Больца. Исторический очерк пробле-
	задач	поступата Евизинда о парависививих. Постановка и решение
		задачи Пуанкаре. Роль задачи Пуанкаре в интерпретации геометрии Лобачевского. Задача о форме тела имеющего наименьшее
		рии лооачевского. Задача о форме тела имеющего наименьшее сопротивление в потоке газа. Задачи на условный экстремум. За-
		дача Эйлера об изгибе стержня. Задачи с интегральными связями
		(изопериметрические). Метод неопределённых коэффициентов.
		Задачи с конечными связями. Задача о геодезических. Геодезиче-
		ское расстояние. Задача Клеро. Вариационные принципы механи-
		ки. Каноническая форма уравнений Эйлера. Теория Гамильтона-
		Якоби. Теорема Якоби. Принцип наименьшего действия в форме
		Лагранжа. Разрывные задачи первого рода. Разрывные задачи
6		второго рода.
	Задача автоматиче- ского регулирова-	Понятие об объекте регулирования. Выходные и входные (управляющие) величины. Отрицательная обратная связь. Алгебраиче-
	ния	пяющие) величины. Отрицательная обратная связь. Алгеораические и частотные критерии устойчивости (Михайлова, Найкви-
		ста). Критерии качества управления. Синтез оптимального регу-
		лятора по квадратичному критерию
7	Численные методы	Методы решения линейных задач: метод последовательных при-
	решения задач оп-	ближений Нейштадта и Итона, Шатровского. Обзор численных
	тимального управ-	методов: методы стрельбы для решения краевой задачи опти-

$N_{\underline{0}}$	Наименование темы	Содержание темы (раздела)
Π/Π	(раздела)	
	ления	мального управления, метод вариаций в фазовом пространстве,
		метод вариаций в пространстве управлений. Достаточные условия
		оптимальности. Достаточные условия оптимальности для непре-
		рывных процессов. Доказательство теоремы. Обобщение теоремы
		о достаточных условиях. Условия, при которых принцип макси-
		мума является достаточным условием экстремума. Достаточные
		условия оптимальности в форме принципа динамического про-
		граммирования. Применение теоремы к решению задач. Сравни-
		тельный анализ методов Понтрягина и Беллмана