Аннотация рабочей программы дисциплины «Алгебра и геометрия» для направления подготовки 01.03.02 Прикладная математика и информатика, направленность (профиль) образовательной программы «Прикладная математика и информатика»

1. Цели и задачи освоения дисциплины (модуля)

Дисциплина «Алгебра и геометрия» является фундаментальной дисциплиной при осуществлении математического обучения бакалавров по направлению прикладная математика и информатика.

Важнейшая задача данной дисциплины — достаточно строго в логической последовательности изложить основы алгебры и геометрии, привить студентам навыки самостоятельной работы, начиная с первых дней обучения в университете, что будет служить основой дальнейшей исследовательской деятельности будущих специалистов.

Основными целями дисциплины «Алгебра и геометрия» являются:

- получение базовых знаний, умений и навыков по алгебре и геометрии;
- формирование компетенций, необходимых для успешной профессиональной деятельности будущих специалистов.

Задачи изучения дисциплины:

- изучение базовых понятий аналитической геометрии и линейной алгебры;
- освоение основных приемов решения практических задач по темам дисциплины;
- грамотное употребление математической символики для выражения количественных и качественных отношений объектов;
- привитие общематематической культуры: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями;
 - подготовка к восприятию многомерных векторных и евклидовых пространств.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины и индикаторы их достижения

Общепрофессиональные компетенции и индикаторы их достижения

Категория (группа)	Код и наименование	Код и наименование индикатора достижения
общепрофессиональной	общепрофессиональной	общепрофессиональной компетенции
компетенции	компетенции	
Теоретические и	ОПК-1 Способен	ИДК-1 _{ОПК-1} Обладает базовыми знаниями,
практические основы	применять	полученными в области математических и
профессиональной	фундаментальные знания,	(или) естественных наук
деятельности	полученные в области	ИДК-20ПК-1 Умеет использовать в
	математических и (или)	профессиональной деятельности знания,
	естественных наук, и	полученные в области математических и
	использовать их в	(или) естественных наук
	профессиональной	ИДК-3 _{ОПК-1} Имеет навыки выбора методов
	деятельности	решения задач профессиональной
		деятельности на основе теоретических
		сведений

3. Содержание дисциплины (модуля)

No	Наименование темы	Содержание темы	
Π/Π			
1	Алгебраические	Числовые множества. Бинарная алгебраическая операция.	
	структуры	Группа. Кольцо. Поле.	
		Построение поля комплексных чисел. Действия над	
		комплексными числами в алгебраической форме.	
		Тригонометрическая форма комплексного числа. Действия в	
		тригонометрической форме.	

№ π/π	Наименование темы	Содержание темы	
11, 11		Геометрическая интерпретация действий над комплексными числами.	
2	Теория определителей	Перестановки. Инверсия. Группа перестановок. Четность подстановок. Знакопеременная группа.	
		Определитель n-го порядка. Определитель 2 и 3 порядков. Свойства определителя. Формулы Крамера для решения систем линейных	
3	Теория матриц	алгебраических уравнений. Матрицы. Виды матриц. Действия над матрицами. Свойства действий.	
4	Арифметическое n- мерное векторное	Обратная матрица. Формула для вычисления обратной матрицы. Арифметическое векторное пространство. Линейная зависимость и независимость векторов. Свойства	
	пространство. Системы линейных	линейной зависимости. Теорема о линейной зависимости векторов.	
	уравнений.	Базис и ранг системы векторов. Ранг матрицы. Системы линейных уравнений. Способы записи. Критерий Кронеккера – Капелли.	
5	Векторные пространства.	Векторные пространства. Линейные подпространства. Критерий подпространства. Линейная оболочка. Сумма и пересечение подпространств. Пространство решений системы линейных однородных уравнений. Фундаментальная система решений. Линейное многообразие.	
6	Векторы на плоскости и в пространстве	Векторы на плоскости и в пространстве. Сложение и умножение вектора на число. Коллинеарные и компланарные векторы. Координаты векторов. Скалярное произведение векторов. Векторное и смешанное произведения векторов.	
7	Прямая линия на плоскости	Прямая линия на плоскости. Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Уравнение «в отрезках». Нормальное уравнение. Взаимное расположение прямых на плоскости. Угол между прямыми. Расстояние от точки до прямой.	
8	Линии второго порядка	Кривая второго порядка. Эллипс. Геометрические свойства эллипса. Гипербола. Геометрические свойства гиперболы. Парабола и ее геометрические свойства. Классификация линий второго порядка.	
9	Теория многочленов	Многочлены над областью целостности. Теорема Безу. Многочлены над полем. НОД и НОК многочленов. Алгоритм Евклида. Неприводимые и приводимые многочлены над данным полем. Уравнение 3 и 4 степени.	
10	Линейные операторы	Линейные операторы. Матрица линейного оператора. Формула матрицы линейного оператора при изменении базиса. Обратное преобразование. Вырожденные и невырожденные преобразования.	

№ п/п	Наименование темы	Содержание темы	
11/11		Образ, ранг, ядро и дефект линейного оператора.	
		Собственные векторы и собственные значения линейного	
		оператора.	
		Собственные значения матрицы линейного оператора с	
		симметрической матрицы.	
		Диагональная форма матрицы.	
11	Евклидовы	Евклидовы пространства. Длина вектора. Угол между векторами.	
	пространства	Неравенства Коши – Буняковского.	
		Ортогональность векторов. Ортонормированный базис.	
		Ортогональное дополнение. Процесс ортогонализации.	
		Ортогональные матрицы.	
		Ортогональная проекция и ортогональная составляющая вектора.	
		Определитель Грамма.	
		Расстояние от вектора до многообразия.	
		Угол между вектором и подпространством.	
12	Квадратичные	Квадратичные формы. Матрица квадратичной формы.	
	формы	Канонический вид квадратичной формы. Метод Лагранжа	
		приведения к каноническому виду.	
		Метод ортогонального преобразования квадратичной формы к	
		каноническому виду.	
13	Плоскость в	Плоскость. Общее уравнение.	
	пространстве	Взаимное расположение плоскостей.	
	1 1	Угол между плоскостями.	
		Расстояние от точки до плоскости.	
14	Прямая в	Прямая линия в пространстве. Виды уравнений прямой.	
	пространстве	Взаимное расположение прямых в пространстве.	
	1 1	Угол между двумя прямыми в пространстве.	
		Расстояние от точки до прямой в пространстве.	
		Расстояние между скрещивающимися прямыми.	
		Уравнения перпендикуляра к двум скрещивающимся прямым.	
		Уравнения перпендикуляра, опущенного из данной точки на	
		данную прямую.	
15	Поверхности	Поверхности второго порядка. Метод сечений.	
	второго порядка	Цилиндрические поверхности. Классификация цилиндрический	
	2 L 2 - 2 - 2 P. W.	поверхностей. Общее уравнение цилиндра.	
		Конические поверхности. Общее уравнение конуса.	
		Поверхности вращения. Эллипсоид.	
		Однополостный гиперболоид. Двуполостный гиперболоид.	
		Эллиптический параболоид. Гиперболический параболоид.	
		Классификация поверхностей второго порядка.	
L		толассификация поверхностей второго порядка.	